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Abstract 

Technology deployment policies are key to bringing early-stage technologies to the market. 

Their design is decisive in determining which technologies are selected by markets, but its 

mechanism remains underexplored. Here we develop an empirically-calibrated agent-based 

model to show how deployment policy design, particularly the technology specificity and 

application specificity, influences technology selection in the case of the solar PV feed-in tariff 

in Germany. Our results show that offering different tariffs for different applications may create 

niches for competition between technologies, while neutral and technology-specific 

remuneration schemes most often result in the dominance of one technology. Thus, it is 

important for policymakers to understand technology selection and learning mechanisms before 

opting for a policy design in order not to prematurely prevent the diffusion of immature 

technologies.  

 

Keywords: Agent-based modelling, deployment policy design, application specificity, 

technology specificity, technology selection, solar PV, technology  



3 
 

1 Introduction 

Climate change mitigation requires the implementation of an effective policy mix including 

carbon pricing and complementary technology deployment policies (Van Benthem, 

Gillingham, and Sweeney 2008; Bergh 2013; Bertram et al. 2015). The latter are necessary to 

account for market failures, such as learning feedbacks (Van Benthem, Gillingham, and 

Sweeney 2008), and to increase economic long-term efficiency by introducing low-carbon 

technologies to the market (van den Bergh et al. 2006). 

For renewable energy technologies, deployment policies have played a crucial role for capacity 

additions and hence to drive these technologies down their learning curves (Couture and 

Gagnon 2010; Fouquet and Johansson 2008; Hoppmann, Huenteler, and Girod 2014; 

Menanteau, Finon, and Lamy 2003). Solar photovoltaics (PV), for instance, has seen a steep 

increase in global deployment from 1.4 to 227 GW in the period between 2000 and 2015 

(REN21 2011, 2016) accompanied by a cost decrease of about 99.4% in the past four decades 

(Trancik et al. 2015). 

While literature has shown that the design of such deployment policies is decisive for their 

success in terms of inducing cost reductions (Kemp and Pontoglio 2011; Lipp 2007), it also 

suggests that poor policy design may lead to unintended dominance of one or a few technologies 

(Hoppmann, Huenteler, and Girod 2014; Schmidt et al. 2016b). Two aspects however remain 

unexplored on deployment policy design and technology selection. First, the specific 

mechanisms of how distinct design features of deployment policies act on technology selection 

remain unexplored in the literature. Second, the discussion on policy design mainly focuses on 

the extent to which renewable electricity generation technologies should be specifically 

supported disregarding the fact that, within these main technology categories, there again exist 

various subtechnologies. The solar PV technology, for instance, may be subdivided into its 

major subtechnologies, crystalline silicon (c-Si) and thin film1 (Hoppmann et al. 2013). 
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We address this research gap by exploring the influence of the design of the German solar PV 

feed-in tariff on the selection of the two main solar PV subtechnologies. The analysed design 

features include the technology specificity and application specificity, as well as the overall 

level of support as sensitivity parameter. For this purpose, we develop an empirically-calibrated 

agent-based model, thereby also contributing to the emerging research field of ex-post models 

for policy design evaluation (Rai and Henry 2016). The modelled agents represent investors 

conducting investment assessments and choosing between the two available solar PV 

subtechnologies. We hence obtain information on the subtechnology selection under specific 

policy design scenarios. The German policy is a particularly interesting case for it is widely 

acknowledged to have been the first and foremost driver of global solar PV deployment in the 

2000s and therefore the main reason for the substantial decrease in solar PV prices during that 

period (Jacobsson and Lauber 2006; Peters et al. 2012; Trancik et al. 2015). 

Our results suggest that policy design has great influence on technology selection. Most policy 

design scenarios lead to the dominance of one or the other technology. However, policymakers 

can extend the period of competition between technologies by offering specific support for 

applications within which several technologies can compete. This also applies for technology-

specific policy design, but only if the tariff differential between the technologies reflects their 

cost differential. The analysed case also suggests that policymakers may dynamically manage 

and adapt the support scheme in order to prevent premature lock-in. Finally, even though we 

focus on solar PV in the present study, the findings are also important to inform policy design 

for emerging low-carbon technologies, such as battery storage. 

  



5 
 

2 The role of policy design in technology selection, the case of 
Germany 

Scholars employ the term policy design in different ways. Here, we use it as the low-level 

operationalisation of the policy instrument. While deployment policies and feed-in tariffs in 

particular may consist of many instrument design features (Jacobs 2014; Mendonça 2007), we 

focus on the ones deemed important for technology diffusion and technology selection by the 

literature. Technology selection hereby represents the choice for a specific technology among 

alternatives. It largely depends on the competitiveness of the different technological options 

and is closely interrelated to technology diffusion in the way that selection of one technology 

leads to the increased deployment and hence diffusion of this technology on the market. The 

abovementioned policy features include the technology specificity (Azar and Sandén 2011; 

Schmidt et al. 2016a) of the policy instrument, the application specificity (Schmidt et al. 2016a), 

and the level of support (Ashford, Ayers, and Stone 1985; Kemp and Pontoglio 2011). By 

focusing on these features, we also contribute to the debate about picking winners. In this 

debate, the advocates for technology-neutral support schemes, such as a carbon tax, argue that 

markets should choose the winner amongst competing technologies (Krugman 1996; Marchant 

2009). Conversely, proponents for technology-specific deployment policies contend them to be 

necessary complements of carbon pricing in order to offer a level playing field to different 

early-stage technologies and avoid premature technological lock-in (van den Bergh et al. 2006; 

Bertram et al. 2015; Gillingham and Sweeney 2012; Jaffe, Newell, and Stavins 2005; Sandén 

and Azar 2005; Schmidt et al. 2016b). Technology-specific policy instruments directly foster 

the deployment of individual or groups of technologies. Importantly, they may be technology-

specific to a greater or lesser extent (Azar and Sandén 2011; Schmidt et al. 2016b). The 

renewable portfolio standard (RPS) enacted in several states of the U.S., for instance, did not 

differentiate between renewable energy technologies, while the feed-in tariff in Germany 

offered different support for the various renewable energy technologies, such as wind or solar 
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PV, but was particularly unspecific at the subtechnology level. This level is the focus of our 

study, as we analyse the effect of different levels of technology specificity on the selection of 

subtechnologies. 

The application specificity of a policy instrument has only recently entered the discussion and 

refers to deployment policies differentiating between applications of a multi-purpose 

technology (Schmidt et al. 2016b). Here, an application is defined as a technology use case 

offering the opportunity for value creation to a specific user group.  Different applications may 

consist, for instance, of onshore and offshore wind installations or the use of batteries for 

different grid services. Even though neutral at the subtechnology level, the German solar PV 

feed-in tariff was actually application-specific discerning rooftop installations from large-scale 

open space installations between 2004 and 20112 (Figure 1) (Hoppmann, Huenteler, and Girod 

2014). 

 

Figure 1. Development of solar PV feed-in tariffs and total installed capacity in Germany in the analysed period 
between 2003 and 2011 (BMWi 2016b; Bundesgesetzblatt 2000, 2004, 2008, 2011). 

Finally, we use the level of support, i.e. the granted tariff (Jacobs 2014; Mendonça 2007; Rogge 

and Reichardt 2016), as sensitivity against the above design features. The level of support has 

been shown to be one of the most decisive factors for technology deployment (Jenner, Groba, 

and Indvik 2013; Mendonça 2007). It therefore opens the window of opportunity for technology 

selection. We vary the overall compensation levels and adjust the technology specificity or 
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application specificity of the feed-in tariff by varying the compensation for the different 

subtechnologies or applications. 

   

3 Methodology 

3.1 General Approach 

The agent-based model assesses the influence of technology specificity, application specificity, 

and the level of support of the German feed-in tariff on the selection of the two major 

subtechnologies in two iterative steps.  

In the first step, we calibrate our model in such a way to simulate total historical solar PV 

diffusion in Germany and the shares of the two subtechnologies. To do so, we use empirical 

data from Germany for the period between 2003 and 2011, such as historical module prices, the 

application and size of actually-built installations and the feed-in tariff they received. The 

analysed years encompass the period when the German feed-in tariff generously and 

successfully supported rooftop as well as open-space installations and Germany was the global 

leader in capacity additions (Figure 1) (Trancik et al. 2015). 

In the second step, we use the calibrated model for different policy designs, i.e. we apply 

alternative policy scenarios with varying feed-in tariff levels for the subtechnologies and 

applications to analyse their effects on technology selection. Scenario 1 represents the historical 

application-specific and technology-neutral tariff, Scenario 2 represents an application-neutral 

and technology-neutral tariff, and Scenarios 3 represents an application-neutral but technology-

specific tariff (Table 1). Sub-scenarios exist for the variations of individual elements, such as 

the rooftop or crystalline-silicon tariffs. In both steps, potential bounded-rational solar PV 

investors, i.e. the model’s agents, take investment decisions for individual installations based 

on the net present value (NPV), which represents the expected earnings from the installation in 

the future at today’s value. The NPV largely depends on module cost and balance of system 
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(BOS) cost as well as the received feed-in tariff. Based on their assessment, the agents decide 

either to invest in an installation with one of the subtechnologies or not to invest at all.  

The number of iterations per modelled year is defined as the number of historically-built 

installations for the calibration step. Conversely, in the second step, the number of investment 

decisions per year – whether positive or negative - from the calibration step is used. At the end 

of every year, the reduction in module and BOS cost thanks to the capacity additions are 

assessed based on the historical learning curves. In our model, we do not consider effects from 

markets external to Germany on the module and BOS prices. 

Table 1. Overview of the analysed scenarios. The baseline tariff refers to the historical tariff for open space installations. See 
a graphical representation of the sensitivities in Figure A. 1.

 

 

3.2 Model 

3.2.1 Agent-based modelling rationale 

We employ an agent-based model to simulate the investment decisions of different agents. This 

approach is suitable for the purpose of this study since it manages to capture non-linear 

innovative diffusion processes at the individual level, explicitly taking into account the 

heterogeneity, the decision-making processes, and the interactions of the different agents 

(Kiesling et al. 2012). Here, the heterogeneity of actors is characterised by the different 

preferences for application and size of the installation by different investors, such as 

homeowners, farmers, and institutional investors (Dewald and Truffer 2011). 
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The model consists of two steps. The first one, called “Calibration step”, is used to calibrate the 

model to simulate historical solar PV diffusion in Germany, while the second step, called 

“Alternative policy scenario (APS) step” uses the calibrations to analyse how the technology 

selection changes under different feed-in tariff design scenarios.  

The two steps work in a similar fashion consisting of two modules called “Investment decision 

module” and “Price curve module” (see Figure 2). In the Investment decision module, one year 

is modelled at a time. It starts with potential investors, i.e. this model’s agents, selecting an 

installation to assess the investment attractiveness. An installation is defined by its size and 

application. In the Calibration step, agents select installations from a pool of the historically-

built installations in the specific year, while in the APS step the agents randomly select the 

installation from a distribution based on all historical installations built in the analysed 

timeframe (see the distributions and functions in Figure A.3 and Table A. 1). This distribution 

is assumed to proportionally represent the actual surfaces available for solar PV installations in 

Germany. 

 

Figure 2. Iterative structure of the model.  

The investment attractiveness of the specific installation is analysed for both subtechnologies 

using the net present value (see below for more details on the assessment of the investment 

attractiveness). The agent then decides whether to invest at all (NPV≥0) and, if so, in which 

subtechnology (maximum NPV). Then, the model moves either to a new agent taking an 

investment decision or to the Price curve module when it has reached the number of annual 
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investment decisions. In the Calibration step, this is achieved when positive investment 

decisions have been taken for all historical capacity additions of the specific year. In the APS 

step on the other hand, the number of annual investment decisions is determined by the number 

of all investment decisions - whether positive or negative - taken for this year in the Calibration 

step (Table A. 2). In the Price curve module, the annual capacity additions are introduced in the 

historical price curves for the respective subtechnology as well as for the BOS and the module 

and BOS prices are determined for the next year. 

3.2.2 Operationalisation of agents’ investment decisions  

The decision-making process of investing into a specific installation is based on the net present 

value (NPV) of the potential installation. The NPV is the sum of the discounted cash flows over 

the investment lifetime minus the initial investment (see equation (1)) and represents the 

expected future earnings at today’s value (Brealey and Myers 2000). It therefore allows for easy 

comparison between different investment options, which are, in this study, the two solar PV 

subtechnologies thin film and crystalline silicon.  

 𝑁𝑁𝑁𝑁𝑁𝑁 = −𝐼𝐼𝑡𝑡=0 + ∑ 𝐶𝐶𝐶𝐶𝑡𝑡
(1+𝑟𝑟)𝑡𝑡

𝑇𝑇
𝑡𝑡=1    (1) 

where It=0 represents the initial investment cost, r the discount rate, CFt the net cash flow in year 

t, and T the duration of the investment. The investment cost depends on the size of the 

installation and the module and BOS cost. Since the size is here defined as the installed capacity, 

BOS costs are increased by 20% for thin film given its lower efficiency (Fraunhofer ISE 2015) 

and the need for more BOS equipment. With increasing project size, we assume the module 

costs to linearly decrease thanks to economies of scale (Figure A. 2d). The annual cash flows 

are the difference between the revenues and expenses (see equation (2)). 

 𝐶𝐶𝐶𝐶𝑡𝑡 = 𝐸𝐸𝑡𝑡𝐶𝐶𝐹𝐹𝐹𝐹𝑡𝑡 − 𝑂𝑂&𝑀𝑀𝑡𝑡  (2) 
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where Et is the energy produced by the installation in year t, FiTt the tariff paid in year t for the 

produced energy, and O&Mt the cost for the operation and maintenance of the installation. 

Values are based on literature (Table A. 3). The annually produced energy is randomly picked 

from a truncated normal distribution in order to account for the different solar irradiation 

exposures of the installations due to their different latitudinal location as well as the roof 

inclination in the case of rooftop installations. 

3.2.3 Assumptions and stylised facts  

Bounded-rational NPV calculation. We assume the actors to have bounded rationality due to 

the cost they incur to gather and process complete information (Simon 1972). We account for 

this in two ways. On the one hand, we introduce a parameter based on the bias towards 

crystalline-silicon installations. This is justified by the fact that German installation companies 

less often offer the thin-film technology in their portfolio (Bundesverband Solarwirtschaft 

2013). Furthermore, we assume this technology-specific bias to be greater for small-scale 

rooftop investors, such as homeowners, than for large-scale rooftop and open-space investors. 

This is justified in the way that, due to their larger investment volume, institutional investors 

and large project developers have a higher incentive to acquire information about different 

offers, and that solar PV module producers are likely to closely work with such agents (Dewald 

and Truffer 2011). Homeowners, on the other hand, are assumed to rely more on their local 

installation companies that obtain complete installation packages from PV system suppliers 

(Dewald and Truffer 2011). 

On the other hand, for each investment decision, the module price is randomly picked from a 

truncated normal distribution. This way, we account for the fact that agents have limited 

knowledge about the cheapest module price due to the transaction cost that gathering complete 

information would incur. 
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Ceteris paribus. The model, ceteris paribus, analyses the implications of the changing 

deployment policy designs on technology demand. We assume the supply to remain the same 

as in the historical case. Hence, we restrict the model to interactions over the price curves. In 

other words, interactions and feedbacks of the effect of a new hypothetical, historically-

divergent deployment policy on the innovation system are not modelled. The effects of external 

events such as the silicon shortage observed between 2006 and 2009 (van Sark et al. 2007) and 

capacity additions in other countries are for instance always assumed to hold in any historically 

diverging paths. We justify this assumption that, with spendings of 20 billion EUR in the 

analysed timeframe (BMWi 2016a), Germany was not only the forerunner in annual PV 

capacity additions but also in cumulative PV capacity (Trancik et al. 2015). At the same time, 

Germany was one of the few countries with a stable policy and therefrom resulting constant 

growth rates (Trancik et al. 2015), hence offering a fruitful environment for PV producing and 

installing companies to learn from earlier experiences. It is therefore valid to assume that a 

slower development in Germany would have slowed down global solar PV capacity 

development and therefore price decreases. 

3.3 Data 

Data on historical installations is used twofold in the model. First, it represents input parameters 

from which agents pick individual installations in the Calibration and APS steps. To do so, it is 

subdivided into applications and, for the APS step, additionally aggregated into a normal 

distribution. Second, subdivided into subtechnologies, the data is used to verify the validity of 

the results from the Calibration step.  

The data is obtained from a consumer organisation that archives original raw data from the 

network operators and makes it publicly available (EnergyMap 2014). Since most data from 

before 2009 is not categorised according to the application of the installation (see Figure A. 3a), 

we apply machine learning to assign applications to the uncategorised data. To do so, the 
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classified data from 2009 to 2012 is used to build a classification algorithm based on the highly 

scalable naïve Bayes classifier. This classifier builds on the principle of Bayes’ theorem which 

uses prior knowledge to describe the probability of an event (James et al. 2014). Here, a subset 

of the classified data is used to train the Bayes classifier. It is assumed that the distribution 

within a size class is approximately constant. The accuracy of the classifier is tested with 

another subset of the already classified data using Cohen’s kappa, a coefficient measuring the 

observer agreement for categorical data (Landis and Koch 1977). Kappa statistics of 0.24 were 

obtained for the accuracy evaluation, which can be considered a fair agreement (Landis and 

Koch 1977). Finally, the Bayes classifier is applied to the unclassified data from 2003 to 2011 

with the simulation input data containing 1,102,601 installations (see result of the application 

classification in Figure A. 3b). 

The historical shares of the thin-film and crystalline-silicon subtechnologies is obtained by 

combining different data sources on the German and world market and validated with German 

solar PV experts (Figure A. 4). 

4 Results 

The modelling results for the different scenarios are displayed in Figure 3 including graphs for 

the diffusion of the two subtechnologies per application for the scenario operationalisation on 

the left-hand side and heat maps displaying how the shares of the subtechnologies develop 

under sensitivity analyses. 

The results for Scenario 1, which represents the historical case, show that on the one hand 

crystalline silicon diffuses more extensively, especially in rooftop installations (Figure 3a.1). 

On the other hand, within the open-space application, competition between the two 

subtechnologies is prevalent. Yet, rooftop sees larger capacity additions and the prevalently 

selected technology in the rooftop application therefore becomes dominant also in open-space 

applications. Turning to Scenario 1a, Figure 3a.2 displays the sensitivity of technology selection 
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patterns under varying rooftop tariffs. They suggest that lowering the rooftop tariffs leads to 

dominance of the thin-film subtechnology thanks to spillover effects from the open-space 

application to the rooftop application. Spillover effects are positive externalities, such as BOS 

cost reductions, induced by capacity additions which improve the business case for both 

subtechnologies within both applications (Battke et al. 2016). Contrarily, with increasing tariffs 

for rooftop, crystalline silicon becomes dominant. The results for Scenario 1b displayed in 

Figure 3a.3 suggest that variation of the open-space tariff leads to more competition, and 

which subtechnology is finally dominating is determined only very late. Increasing of the open-

space tariffs results in final dominance of thin film, whereas decreasing open-space tariffs 

respectively foster the selection of crystalline silicon. Overall, the analysis of Scenario 1 

indicate that the German policymaker operated at the edge of lock-in but managed to keep 

competition up. 

Turning to Scenario 2, the results displayed in Figure 3b.1 suggest that thin film is the 

dominating subtechnology in this application-neutral and technology-neutral policy 

configuration. Yet, thanks to its historical predominance, crystalline silicon is the 

subtechnology of choice for rooftop installations in the first period before spillover effects 

induce a switch to thin film. Increasing the overall tariffs does not induce any changes in the 

selection patterns (see Figure 3b.2). However, when decreasing the tariffs beyond a threshold 

(beyond -5% in the present case), crystalline silicon becomes dominant. This suggests that, at 

very low overall tariffs, total diffusion is low in such a way that learning and spillover effects 

do not occur, and investors stick to the initially more prevalent subtechnology. It is noteworthy 

that, with the overall tariffs being lower in Scenario 2 than in Scenario 1, the total diffusion of 

both subtechnologies is also lower. 

Finally turning to Scenario 3, we find that, for most tariff combinations, thin film is the 

dominant subtechnology even if crystalline silicon receives more support (Figure 3c.1, Figure  
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a.1) Scenario 1 (Base case). Historical 
application-specific feed-in tariff. 
 

 

a.2) Scenario 1a. Variation of rooftop tariff. Constant open-space 
tariff. 

 

a.3) Scenario 1b. Variation of open-space tariff. Constant rooftop 
tariff. 

 

b.1) Scenario 2. Technology-neutral, application-
neutral feed-in tariff. 

 

b.2) Scenario 2. Overall tariff variation. 

 

c.1) Scenario 3a. Subtechnology specific, 
application-neutral feed-in tariff. 
Thin film +5%.

 

c.2) Scenario 3a. Variation of thin-film tariff. Constant c-Si tariff. 

 

c.3) Scenario 3b. Subtechnology specific, 
application-neutral feed-in tariff. 
Crystalline silicon +5%. 

 

c.4) Scenario 3b. Variation of c-Si tariff. Constant thin-film tariff. 

 

Figure 3. Modelling results of the analysis of policy design effects on technology selection. a.1,b.1,c.1,c.3) The graphs indicate 
the total diffusion of the two subtechnologies for the specific operationalisations of the scenarios summarised in Table 1. 
a.2,a.3,b.2,c.2,c.4) The heat maps show total shares of thin film and crystalline silicon for tariff variations between -10% and 
+10%. The lines in the heat maps indicate the tariffs used for the left-hand side graphs. 
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3c.3). Only in the case of crystalline silicon receiving an at least 8%-higher tariff than thin film, 

overall lock-in to crystalline silicon is observed (see Figure 3c.2 and Figure 3c.4). These results 

imply that spillover effects for the BOS cost between the two subtechnologies are advantageous 

for thin film. Thus the deployment of crystalline silicon, especially in rooftop installations, 

improves the business case for thin film to the point that it actually replaces crystalline silicon.  

The comparison of the heat maps of Scenario 2 and Scenario 3a (Figure 3b.2 and Figure 3c.2) 

suggests that increased tariffs for thin film does not induce substantial changes in selection 

patterns but simply accelerates lock-in to thin film. 

Overall, the results show higher competition within the open-space application. For rooftop on 

the other hand, one technology is usually dominating, but shifts from one subtechnology to the 

other, from rooftop to thin film, happen when spillover effects from open space are large.  

5 Discussion and Conclusion 

As our analysis demonstrates, policy design is very influential not only for technology selection 

but also for total technology diffusion. As expected, the level of support is the decisive factor 

in terms of overall technology diffusion, i.e. diffusion increases with increasing tariffs and vice 

versa. For technology selection, the mechanisms are more complex. 

As our results indicate, dominance of one or the other subtechnology is the most likely case for 

the analysed scenarios. This means that, at the end of the analysed period, one subtechnology 

is used for all capacity additions under most design scenarios. Thin film is thereby more 

prevalent even in the case of high initial adoption of crystalline silicon thanks to spillover 

effects and decrease in cost of BOS. It is shown that a neutral policy design, which does not 

specifically support technologies or applications, results in the dominance of the technology 

that manages to become more competitive very quickly. The results of the technology-specific 

policy design suggest that directly supporting one or another technology does not necessarily 

lead to dominance of the supported technology. In fact, the support differential between the 
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technologies needs to be sufficiently large and hence reflect the cost differential of the 

technologies in order to avoid dominance of the technology that is more efficient in the short 

term.  

While our results show little competition within the rooftop application, the open-space 

application offers a level playing field for both subtechnologies to gain market shares. Thus by 

supporting specific applications, policymakers can create niches to stir competition between 

different technologies and not prematurely pick winners. In the present case of Germany, 

expanding the feed-in tariff to larger open-space installations in 2004 helped to overcome the 

early dominance of crystalline silicon and the recurring adaptations of the policy design 

managed to keep a competitive environment where both technologies could thrive. 

Our insights can be extended to other multi-purpose technologies, such as batteries (Stephan et 

al. 2016). Before picking a winner or let the market pick a winner, policymakers can make use 

of technologies being competitive in different applications and, by designing application-

specific deployment policies, effectively offer a level playing field for many technologies 

(Schmidt et al. 2016b). Thus, learning effects can be fostered for all early-stage technologies, 

and the ultimately most efficient technologies may then be selected by the markets at a later 

point. However, our results also show that competition between technologies within and across 

applications and the risk of ending up with one dominant technology at the outset need to be 

understood when designing deployment policies. Though changes in competitiveness between 

technologies happen gradually, i.e. one technology does not become prevalent from one 

moment to the next. This allows policymakers to dynamically manage and adapt the policy 

design if necessary. 

Our analysis offers three contributions: First, with the agent-based model, we methodologically 

contribute to the emerging but still scarce number of ex-post models for policy design 

evaluation hence offering a tool to better understand the mechanisms between design elements 

and technology selection. Second, our empirical contribution consists of collecting, processing, 
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and using data on the application and subtechnology of historical solar PV installations in 

Germany, as well as the speed at which a specific technology can become dominant in a given 

policy configuration. Third, we contribute to the policy debate by proving the relevance of 

application specificity in indirectly influencing technology selection and its potential to 

maintain a competitive environment for several technologies, as well as poorly designed 

technology-specific policies may not result in the desired outcome. 

Future research on forward-looking models that account for technology selection and lock-in 

could provide important inputs for the effective design of deployment policies to introduce new 

low-carbon technologies to the market in order to help mitigate climate change. 
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7 Endnotes 
1 In our analysis, we focus on two mature solar PV subtechnologies, crystalline silicon and thin 

film. It is important to note that these subtechnologies are rather technology concepts, each of 

which again consists of variants of these concepts featuring similar characteristics, such as 

working principle, efficiency, production process and cost. 

Crystalline silicon. In the crystalline-silicon subtechnology, we include monocrystalline silicon 

as well as polycrystalline silicon cells. Their manufacturing starts with the fabrication of pure 

silicon ingots from metallurgical silicon followed by the slicing of these ingots into wafers with 

a thickness of approximately 200µm  (IRENA and IEA-ETSAP 2013). These wafers are then 

assembled into modules. Crystalline silicon is the solar PV technology with the highest 

efficiency and hence offers more capacity per surface area than other subtechnologies. Ribbon 

silicon, which is also a wafer-based technology, is not considered in this study due to its low 

market shares (Hering 2012). 
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Thin film. In thin film, we include cell technologies of various materials, such as amorphous 

silicon, cadmium telluride, and copper indium gallium diselenide. The manufacturing process, 

common to all these cell technologies, consists of vapour deposition of the photoactive material 

on a substrate, such as conductive glass, and subsequent washing, cutting, and sealing of the 

final module (Sartorius 2005). Thanks to the vapour deposition process, the absorbing layers of 

thin film PV do not exceed thicknesses of 1µm (Sartorius 2005) which allows for large material 

savings compared to crystalline silicon. Furthermore, the energy requirements for thin-film cell 

and module production are lower than for crystalline silicon (Fraunhofer ISE 2015). These two 

factors constitute the competitive advantage of thin film in terms of production cost per 

capacity. Yet, this advantage is compensated by the lower efficiency of thin film compared to 

crystalline silicon. 

In this study, we do not consider other solar PV subtechnologies, such as dye-sensitised solar 

cells or organic PV, due to their immaturity and low market penetration. 

2 We focus on the German feed-in tariff between 2003 and 2011. While this was the period of 

very strong market growth, public support of solar PV deployment already started much earlier 

and is still ongoing (Hoppmann, Huenteler, and Girod 2014; Jacobsson and Lauber 2006). The 

predecessors of the analysed feed-in tariff were implemented in the 1990s in the form of an 

early technology-neutral feed-in tariff, the Electricity Feed-in Law, complemented by the 1000-

roof programme (Hoppmann, Huenteler, and Girod 2014; Jacobsson and Lauber 2006). While 

the former did not trigger any considerable solar PV deployment due to its very low 

remuneration, the 1000-roof programme was more successful offering an investment grant for 

small-scale rooftop solar PV installations of up to 70% of the investment cost. Supplemented 

by various initiatives on the municipal level, it induced an increase of installed solar PV 

capacity from 2 MW in 1990 to 70 MW in 1999 (BMWi 2016b). In 2000, the Renewable Energy 

Act (EEG) replaced the Electricity Feed-in Law and introduced cost-reflective and technology-

specific tariffs (Hoppmann, Huenteler, and Girod 2014; Jacobsson and Lauber 2006). For solar 
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PV, one tariff was offered for rooftop installations with capacities up to 5 MW and small-scale 

open-space installations up to 0.1MW during a period of 20 years. An annual degression path 

of the tariffs of 5% was introduced to account for learning effects. In combination with the 

successor of the 1000-roof programme, the 100,000-roof programme, the new support scheme 

had a considerable effect on growth rates of solar PV capacity additions resulting in a total 

installed capacity of 435 MW in 2003 (BMWi 2016b; Hoppmann, Huenteler, and Girod 2014). 

The amended EEG implemented in 2004 brought major changes by removing the size caps for 

solar PV installations and increasing the remuneration for the rooftop application while also 

differentiating between different installation sizes within the rooftop application (Hoppmann, 

Huenteler, and Girod 2014). This increase in support led to an even larger boom in solar PV 

deployment between 2004 and 2008 resulting in massive price reductions and a total installed 

capacity of 6,120 MW in 2008 (BMWi 2016b). Technology and power producers earned high 

profits thanks to the fact that the automatic annual degression rate could not keep up with the 

unforeseen extent of learning effects. In order to limit social costs, the EEG was therefore 

amended anew in 2009 introducing a flexible degression and changing the size differentiation 

within the rooftop application. In 2010, another amendment followed immediately reducing the 

tariffs even further due to the influx of cheap solar PV panels from China. Finally, the 

amendments implemented since 2012 have changed the focus of the EEG away from merely 

increasing the solar PV deployment to ensuring smooth integration of solar electricity into the 

grid and the market  (Hoppmann, Huenteler, and Girod 2014). For this reason and also because 

of other countries jumping on the bandwagon of comprehensive solar PV deployment support, 

we terminate our analysis in 2011 when total installed solar PV capacities had reached 25,429 

MW (BMWi 2016b). 
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A Appendix 

a) Scenario 1a

 

b) Scenario 1b

 

c) Scenario 2 

 

d) Scenario 3a

 

e) Scenario 3b

 

Figure A. 1. Variations (in beige) of the tariffs in the three alternative policy scenarios. a) In Scenario 1a, the historical rooftop 
feed-in tariffs (beige area) are varied between -10% and +10%, the historical open-space tariff staying the same. b) In Scenario 
1b, the historical open-space feed-in tariff is varied (beige area), the historical rooftop tariffs staying the same. c) In Scenario 
2, the baseline tariff (which corresponds to the historical open-space tariff) is given to all applications and subtechnologies and 
varied between -10% and +10% (beige area). d) In Scenario 3a, crystalline silicon is remunerated with the baseline tariff, thin 
film with a 5%-higher tariff. The sensitivity is analysed by varying the tariff for thin film between -10% and +10% of the 
baseline tariff (beige area). e) In Scenario 3b, thin film is remunerated with the baseline tariff, crystalline silicon with a 5%-
higher tariff. The sensitivity is analysed by varying the tariff for crystalline silicon between -10% and +10% of the baseline 
tariff (beige area). 
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a) Thin-film price curve 

 

b) Crystalline-silicon price curve 

 

c) BOS price curve 

 

d) Economies of scale 

 

Figure A. 2. Historical price curves for a) thin film, b) crystalline silicon, and c) balance of system (BMUB 2007; BMWi 2011, 
2014; Bundesverband Solarwirtschaft 2013; EnergyMap 2014; Fraunhofer ISE 2015; Hering 2011, 2012; IRENA 2015), and 
e) economies of scale (BMWi 2011, 2014; Bundesverband Solarwirtschaft 2013). See overview of functions in Table A. 1. 
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a)

 

b)

 

c) 

 

Figure A. 3. Data on historically built installations in Germany. a) Original data including unclassified installations (EnergyMap 
2014). b) Data with distribution of different applications after classification process. c) Simulation input data differentiated by 
size classes within the rooftop (Gebäude) and open-space (Freifläche) applications. 
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Figure A. 4. Historical shares of thin-film and crystalline-silicon solar PV in Germany for the analysed years, 2003-2011. 
Data aggregated from different sources including German and world market data (Bundesverband Solarwirtschaft 2013; 
EnergyMap 2014; Fraunhofer ISE 2015; Hering 2012). 
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Table A. 1. Overview of the different functions used in the model 

Model function Method Result Sources 

Price curve thin film Regression splines 

4 knots, log/log 

See Figure A. 2a  (BMUB 2007; BMWi 2011, 2014; 
Bundesverband Solarwirtschaft 2013; 
EnergyMap 2014; Fraunhofer ISE 
2015; Hering 2011, 2012; IRENA 
2015) 

Price curve c-Si Regression splines 

4 knots, log/log 

See Figure A. 2b  (BMUB 2007; BMWi 2011, 2014; 
Bundesverband Solarwirtschaft 2013; 
EnergyMap 2014; Fraunhofer ISE 
2015; Hering 2011, 2012; IRENA 
2015) 

Price curve BOS Linear Regression 

No knots, log/log 

See Figure A. 2c  (BMUB 2007; BMWi 2011, 2014; 
Bundesverband Solarwirtschaft 2013; 
EnergyMap 2014; Fraunhofer ISE 
2015; Hering 2011, 2012; IRENA 
2015) 

Module price thin 
film 

Truncated normal 
distribution 

Mean = derived from price 
curve 

Sd = 0.15*mean 

Lower limit = 0.4*mean 

Upper limit = 1.4*mean 

 (Bundesverband Solarwirtschaft 2013) 

Module price c-Si Truncated normal 
distribution 

Mean = derived from price 
curve 

Sd = 0.15*mean 

Lower limit = 0.4*mean 

Upper limit = 1.4*mean 

 (Bundesverband Solarwirtschaft 2013) 

Annually-generated 
power 

Truncated normal 
distribution 

Mean = 943.96 

Sd= 133.61 

Lower limit = mean – 
2*Sd 

Upper limit = mean + 
2*Sd 

 (EnergyMap 2014) 

Economies of scale Linear regression 

Log/linear scale 

ES (S) = 104.87*S-0.051 

See Figure A. 2d 

 (BMWi 2011, 2014; Bundesverband 
Solarwirtschaft 2013) 

 

  



30 
 

Table A. 2. Investment decisions per category from calibration step. 

Category 2003 2004 2005 2006 2007 2008 2009 2010 2011 

Roof-
top 

0-30kW 832,007 76,241 95,151 83,904 72,297 104,480 156,174 217,033 227,467 

30-100kW 1,669 5,407 6,246 4,884 6,340 10,931 23,275 35,964 28,338 

0.1-1MW 53 184 290 238 440 779 3,118 6,785 6,809 

> 1MW 0 0 0 0 2 4 27 38 49 

Open 
Space 

0-30kW 0 0 0 0 0 0 389 731 348 

30-100kW 0 0 0 0 0 0 87 70 53 

0.1-1MW 10 181 221 239 208 348 170 318 282 

> 1MW 0 9 14 15 32 29 86 271 349 
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Table A. 3. Model input values and sources. 

Parameter Unit Value Comments and sources 

Module cost EUR/Wp See comments The yearly updated output of the price curve (see Figure A. 
2a,b) is used as input in a normal distribution function from 
which a value is randomly chosen (see Table A. 1 for more 
details on the distribution function). Sources: (BMUB 
2007; BMWi 2011, 2014; Bundesverband Solarwirtschaft 
2013; EnergyMap 2014; Fraunhofer ISE 2015; Hering 
2011, 2012; IRENA 2015) 

Balance of system cost EUR/Wp See comments The yearly updated output of the price curve (see Figure A. 
2c) is used as input in a normal distribution function from 
which a value is randomly chosen (see Table A. 1 for more 
details on the distribution function). Sources: (BMUB 
2007; BMWi 2011, 2014; Bundesverband Solarwirtschaft 
2013; EnergyMap 2014; Fraunhofer ISE 2015; Hering 
2011, 2012; IRENA 2015) 

Annually generated 
power 

kWh/Wp See comments For every investment decision, a value is randomly chosen 
from a calibrated normal distribution (Table A. 1 for more 
details on the distribution function). 

Due to its lower efficiency, the normal distribution is 20% 
lower for thin film. Source: (EnergyMap 2014) 

Duration of investment Years 20 Between 2003 and 2011, the feed-in tariff in Germany is 
paid for 20 years (Bundesgesetzblatt 2000, 2004, 2008, 
2011). 

Project size Wp See comments The selected installation’s size is an empirical model input 
(see distribution of sizes in Figure A. 2c). 

Feed-in tariff EUR/Wh See Table A. 4 See Table A. 4. Sources: (Bundesgesetzblatt 2000, 2004, 
2008, 2011) 

Annual O&M cost EUR 10% of 
investment cost 

 

Inflation rate % 1  

Discount rate % 4  

Cumulative thin film 
capacity in Germany 
before 2003 

MWp 25.45  (EnergyMap 2014) 

Cumulative c-Si capacity 
in Germany before 2003 

MWp 268.7  (EnergyMap 2014) 
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Table A. 4. Historical German feed-in tariffs between 2003 and 2011 as used in the simulation in [EURcts./kWh]  
(Bundesgesetzblatt 2000, 2004, 2008, 2011). 

Category 2003 2004 2005 2006 2007 2008 2009 2010 2011 

Roof-
top 

0-30kW 45.70 57.40 54.53 51.80 49.21 46.75 4301 35.40 28.74 

30-100kW 45.70 54.60 51.87 49.28 46.82 44.48 40.91 33.68 27.33 

0.1-1MW 45.70 54.00 51.30 48.74 46.30 43.99 39.58 31.87 25.86 

> 1MW 45.70 54.00 51.30 48.74 46.30 43.99 33.00 26.57 21.56 

Open space 45.70 45.70 43.42 40.60 37.96 35.49 31.94 26.72 21.59 
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