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Abstract: This study investigates the design and implementation of emission trading scheme 

(ETS) for reducing energy-related emissions in China, focusing on the market efficiency and 

carbon price drivers. This study first compares the policy design of China ETS in relative to 

EU ETS. Second, it tests the weak-form efficient market hypothesis and found that all ETS 

markets were informationally inefficient. Third, it analyzes the short-and long-run causal 

effects between carbon prices and energy prices. Results show that carbon prices between ETS 

pilots are co-integrated, but this is not true for every two ETS pilots. Also, energy prices have 

both short and long-run dynamic effects on carbon prices. At the end, this study examines the 

structural breaks of carbon prices.  

Keywords: Emission trading, design and implementation, market efficiency, carbon price, 

energy price 

1 Introduction 
The strong interest in using “New Environmental Policy Instruments” (NEPIs)--including 

economic instruments that emphasize market incentives and suasive instruments that 

encourage voluntary environmental changes, in contrast to traditional direct government 

command and control (GCAC) approaches, has been prevalent in developed countries since 

1980s, with numerous academic studies on their implementation and effectiveness. However, 

there is a lack of evidence illustrating the complexity in the design and implementation in 

relation to the effectiveness of the NEPIs in developing countries where environmental 

investments and regulatory capacity are low.  



Economic instruments can be in the form of tradable permits, taxes, subsidies, charges, risk 

liability and so on (Bertoldi and Rezessy 2009; Wurzel, Zito, and Jordan 2013). The rationale 

behind economic instruments is the polluter pays principle that requires polluters to pay for the 

pollution that they cause. Greenhouse gas (GHG)1 emissions have been attributed for the global 

climate change and emission trading scheme (ETS) is one of three mechanisms2 for reducing 

GHG emissions that the Kyoto Protocol suggested. Carbon dioxide (CO2) is the principal GHG, 

so hereafter CO2 emission is not deliberately differentiated from GHG emission. ETS creates 

a market for CO2 emission allowances so as to encourage the internalization of emission 

abatement costs. If the market functions well, carbon price (i.e. the price of CO2 emission 

allowance) can reflect the marginal cost of emission reductions and encourage enterprises to 

adopt low-carbon measures internally. One of the major implementation concerns is that 

targeting participants fail to respond in ways anticipated by policy makers due to low economic 

incentives (Weaver 2010). 

So far, ETS has been used for emission abatement in European Union (EU), United States (US), 

South Korea, Switzerland, New Zealand, Australia, Canada, Japan, Kazakhstan and China. 

China is the by far the second largest emitter of CO2 emissions, mainly caused by its huge size 

of population and economy and the high share of coal (more than 60%) in its energy mix 

(Olivier et al. 2015). Since 2013, China has developed seven domestic pilots of ETS, covering 

5 cities and 2 provinces. Shenzhen ETS is the first ETS in China, which was established in 

June 2013. Now China is on its way to establish a nationwide carbon trading market, which 

will come into operation in 2017. Experiences from the pilots become references for the 

national ETS to be established.  

This study aims at evaluating the implementation of ETS in China, by addressing features of 

                                                
1 GHG includes carbon dioxide, methane, nitrous oxide, hydroflurocarbons, perfluorocarbons and sulphur hexafluoride.  
2 The three mechanisms of reducing GHG emissions that the Kyoto Protocol suggested are Clean Development Mechanism (CDM), joint 
implementation, and emission trading.	
  



the economic incentives provided by the policy instrument through carbon price development. 

Specifically, this study examines the price volatility, the weak-form efficient market hypothesis 

and the co-integrations between carbon markets. Then it explores drivers of carbon prices, 

focusing on structural breaks and the influence from energy markets.  

2 Literature review 

2.1 Theories surrounding ETS 
The discussions surrounding economic policy instruments assume that the selection of policy 

instruments relates to the effectiveness in achieving environmental goals. Theory of policy 

design implies that policy effectiveness could be improved by better matching problems and a 

solution with a good consideration of possible policy instruments (de Leon 1992). And the 

main idea is for policy analysts to identify a group of policy tools that are routinely used, 

regardless of the policy domain (Howlett and Lejano 2016). Recent studies on policy 

implementation also address the relation between the selection of policy tools and the 

implementation success. However, there is no simple causal relation between the selection of 

policy instruments and implementation effectiveness (Knill and Liefferink 2007). In the 

environmental domain, given the complexities of environmental issues, economic instruments 

may not generate good performance in cases with limited monitoring and enforcement 

resources. Regarding ETS, the price development trajectory of EU-ETS may not be repeated 

in the carbon markets of China.  

ETS is known as a “cap-and-trade” approach to control pollution. The “cap” sets levels of 

allowed emissions or assigned amounts. These emission allowance units can be considered as 

the right to emit pollutants. The “trade” creates a market and allow polluters to trade the 

allowance units. So, the emission allowance would be a new commodity in the market.  

ETS has advantages over other pollution control tools. Most importantly, it is believed that 

ETS is the least-cost tool for emission abatement (Grubb et al. 2011). In an ETS, an entity can 



choose to reduce its internal emissions, sell excess emission allowances or buy allowances 

from other entities who face lower emission reduction costs. In principle, entities choose the 

most affordable compliance strategies, and each entity reduces its emissions only to the level 

when the marginal cost of reducing emissions internally equates to the cost of buying the same 

amount of allowances. Therefore, ETS theoretically works as an efficient environmental policy 

with low social cost.  

However, ETS is criticized for its uncertainty. In practice, carbon prices are often low and with 

high volatility. For instance, the carbon price of EU-ETS once decreased to almost zero in its 

first carbon trading period from 2005 to 2007 (Alberola, Chevallier, and Chèze 2008). In those 

cases, industrial participants have little incentives to reduce internal emissions and have to 

adapt to the volatile market costly.  

2.2 Empirical studies on carbon price development 
There are many studies evaluating the implementation of ETS through carbon price analysis. 

Market efficiency, price volatility, and relationships between carbon prices and energy prices 

are the topics that are frequently brought up in this literature. Time series analysis techniques 

often for those studies are random walk model, co-integration test, Granger causality test, AR 

model, GARCH model, ARIMA model, VAR model, VECM model and so on (Chevallier 

2012). As EU-ETS is the first and largest ETS scheme in the world3, existing literature 

concentrates on the development of EU-ETS.  

A main driver of carbon price identified in literature is energy price. Regression analysis, 

Granger causality test and co-integration analysis are the methods frequently used for the topic. 

Energy prices can affect carbon prices through their influence on energy demand (Chevallier 

2012). Hintermann (2010) found that natural gas and coal prices affected the spot price of EUA 

(EU emission allowance) in 2006-2007. Alberola et al. (2008) found that the EUA price was 

                                                
3 EU-ETS covers more than 10 thousand entities across 27 member states (Chevallier, 2012). 



related to the prices of Brent oil, natural gas, coal, electricity, and energy spreads. This group 

of studies focuses on the relationship between an ETS market and energy markets, but few 

studies test the relationship between two ETS markets, even though it is theoretically possible 

that carbon prices in one ETS market are affected by price signals from other ETS markets.  

Literature also found structural breaks of price series driven by institutional decisions. For 

instance, Alberola et al. (2008) examined impacts of institutional decisions on European carbon 

prices from 2005 to 2007, and found that carbon price change had structural breaks following 

the disclosure of verified emissions or following stricter allowance allocation. 

Price volatility is important for investment risk management purpose and price returns are often 

used for volatility analysis. Price returns can be calculated based on daily data or intraday data 

(Chevallier 2012). Let Pricet be the logarithmic spot price at time t and the logarithmic price 

returns can be measured by lnReturnt= ln(Pricet/Pricet-1) (Montagnoli and de Vries 2010). Byun 

and Cho (2013) used the absolute values of daily lnReturnt of carbon futures to create the 

volatility time series, and calculated the so-called “realized volatility” by averaging squared 

daily lnReturnt against sampling frequency m and then computing a square root (that is, 

calculating a standard deviation to show the daily variance of log returns). They found that 

Brent oil, coal, and electricity prices could efficiently forecast the daily volatility of carbon 

futures. Reboredo (2014), on the other hand, tested on the volatility spillovers between the oil 

market and EU-ETS market during Phase II (2008-2012) using a conditional AR model based 

on weekly carbon prices and crude oil prices.  

Price returns data are not only used for volatility analysis, but also for testing the market 

efficiency of ETS. The weak-form efficient market hypothesis (EMH) is that a market is 

efficient if its current price effectively reflects all available information. Montagnoli and Vries 

(2010) examined the EMH for the EU-ETS using a random walk model to test randomness of 

spot price returns. If price returns followed a random walk, the market was considered as 



efficient. They concluded that the EU-ETS market was not efficient in Phase I (2005-2007), 

but it became efficient in Phase II. Later on, Daskalakis (2013) examined the EMH based on 

the price return data of carbon futures and also found that the EU carbon trading market 

achieved a weak efficiency from 2010 onwards, which implied that the EU ETS market was 

moving towards maturity.  

2.3 Research question and hypotheses 
In this study, the objective is to assess the implementation of the ETS policy instrument in 

China, with a focus on the carbon price development. The research questions to be addressed 

would be: 

(1)  Is ETS in China efficiently functioning and providing adequate economic incentives 

through carbon price development? 

(2)  How does a local ETS market relate to energy market or other local ETS markets in 

China? 

Several hypotheses are brought up based on the aforementioned literature.  

Hypothesis 1 The local ETS markets in China are informationally efficient as in the price 

return series follow a random walk.  

Hypothesis 2 Carbon prices between two local ETS pilots in China are co-integrated.  

Hypothesis 3 Carbon prices of a local ETS pilot in China are co-integrated with energy prices.  

3 Policy design of local ETS in China 
China respond to climate change by setting ambitious emission reduction goals. In June 2015, 

China submitted the report ‘Enhanced Actions on Climate Change: China’s Intended 

Nationally Determined Contributions to the Secretariat of the United Nations Framework 

Convention on Climate Change (UNFCCC) and determined to decrease CO2 emission intensity 

by 60–65% by 2030 compared with the 2005 level (NDRC, 2015). A set of policies and policy 

instruments has been undertaken to facilitate achieving the targets, including ETS. Traditional 



GCAC approaches are found to be unable to achieve long-term energy efficiency and GHG 

reduction targets (Wang and Chen 2015). In particular, during the 12th FYP period (2010-2015), 

President Xi emphasized the necessity to use economic instruments in solving environmental 

issues, which was also given attention in the newly released 13th FYP. Lessons from the ETS 

pilots are not only necessary for building the national ETS scheme, but also inspiring for 

introducing other policy instruments of the same type to China.  

In general, developing an ETS involves cap setting, allocation mechanisms of initial emission 

permits, monitoring and implementation, political issues, pollution permits, market definition, 

market operation, and the integration of the existing law and institutions (Stavins 1995; Zhao 

et al. 2014). The policy design of the ETS pilots in China reflects the characteristics of the 

imperfect market and economic development in an emerging economy.  

 (1) Scope 

The first thing of constructing an ETS is decide on what industries to involve. In total, energy 

and manufacture/industrial process are commonly covered by existing ETS, including China’s 

ETS and EU ETS. EU ETS also covers aviation, while in China, covering aviation or 

transportation is at discussion stage for most pilots. China’s ETS covers both direct emissions 

and indirect emissions 4 . For instance, Beijing and Shenzhen involve public buildings as 

participants in ETS. EU ETS, however, does not cover those indirect emission sources. One 

reason for this difference is that the indirect GHG emissions account for a large proportion of 

the total emissions in China. The other reason is that China’s electricity price is regulated rather 

than determined by the market, which means that the cost change of electricity generation 

cannot be reflected in the electricity price.  

(2) Cap setting 

                                                
4 Direct emissions refer to emissions from direct energy consumption, industrial processes and production. Indirect emissions refer to 
emissions from indirect energy consumption. Indirect emission sources can be public buildings, hotels, banks and so on.  



The cap assigned to involved participants can be absolute caps or intensity-based caps. 

Absolute targets limit emission level to a pre-specified absolute quantity while intensity-based 

targets limit emission level to a pre-specified emission rate relative to input or output (Ellerman 

and Wing 2003). In practice, all seven ETS pilots in China assign intensity-based caps to 

participants compared to the use of absolute caps in EU ETS.  

There are four tier intensity based emission reduction targets in China: country level, provincial 

level, city level and enterprise level. China set an emission intensity-based target for the 

country in its FYPs, and provinces and cities set their targets accordingly. Thereafter, each ETS 

pilot set emission caps for participating enterprises. China’s GHG emissions have not reached 

its peak yet, while the country still keeps a rapid economic development. Setting intensity-

based caps saves space for future economic growth in China. Besides, the intensity-based cap 

setting can make better adjustments for the emergence of new entrants and unexpected changes 

of emission reduction cost. However, as the cap setting allows rapid economic growth to be 

continue, its effectiveness on emission abatement has higher uncertainty than the absolute cap 

setting in a short term.  

 (3) Allowance allocation methods  

Normally, there are two major approaches of allowance allocation, which are free allocation 

and auctioning. Auctioning is more appropriate when the carbon trading market becomes 

mature and participants are familiar with rules in the market, while free allocation can be 

applied at the initial stage of carbon trading (Zhao et al. 2014). The combination of free 

allocation and auctioning is prevalent across pilots. Auctioning has been used as a 

complementary allocation method in Guangdong, Shanghai and Shenzhen, and will be used in 

Beijing and Tianjin. Similarly, EU-ETS relied on free allocation and allocated a small portion 

of allowances by auctioning, but it is on a progress toward full auctioning. Another feature of 



China ETS is that the regulations are on industry sectors and enterprises, different from the EU 

ETS that emphasizes regulations on installations.  

(4) Allowance reserves for price containment 

Reserving emission allowances for price containment and for the emerging new entrants is also 

a feature of China’s ETS. The reserve mechanism has been used by Beijing, Guangdong, Hubei 

and Shenzhen. In these pilots, the reserve mechanism is combined with set price floors to abate 

price volatility. Some pilots, such as Shenzhen and Beijing, also set price ceilings to further 

stabilize the market. The reserves for price containment will be sold when the carbon price is 

too high and be bought back when the carbon price is too low.  

(5) Market rules for allowance trading 

In contrast with EU-ETS, China’s ETS pilots allow only spot trading5. So, futures contracts are 

not applicable in China at present. Take Shenzhen as an example. At the beginning of its 

establishment, Shenzhen ETS employed fixed price trading6, which gave participants more 

opportunity to express their preferences. But fixed price trading was criticized for time 

inefficient, low transaction amount and distorted price signal. Therefore, Shenzhen has 

changed the trading type to spot trading since 20th December 2013, which was supposed to 

operate more efficiently.  

(6) Compliance calendar and penalties 

The enforcement of assigned amount of emission allowances can be facilitated by penalties for 

non-compliance. Types of penalties can be stricter emission targets in the next compliance 

period, monetary fines on excess emissions, or both. EU ETS, Shenzhen ETS, Hubei ETS and 

Guangdong ETS use both types of penalties. In Phase II of EU ETS, non-compliant enterprises 

have to pay 100€ (about 143 $) penalty per ton of excess CO2e emissions7 and the over 

                                                
5 In the spot trading, a seller or a buyer just report his fixed price. When a potential buyer can accept the price or offer a higher price, the 
transaction can be reached. 
6 In the fixed price trading, a seller sets the fixed price and fixed amount of trading units to offer and a potential buyer sets the fixed price 
and fixed amount of trading units needed. One success transaction can be achieved when both the price and amount of trading units match. 
7 CO2 equivalent emissions 



emissions would be deducted from the following compliance year’s allowances. Shenzhen, 

Hubei and Guangdong ETS are similar to EU-ETS in using stricter emission allocation for non-

compliance, but different from EU-ETS regarding the amount of monetary fines. In Shenzhen 

and Hubei, non-compliant enterprises should pay the penalty equal to three times the average 

market price for each ton of CO2 emissions exceeding the limit, while Guangdong charges a 

total amount of up to 50000 ￥ (about 7900 $) for non-compliance. In Beijing and Shanghai, 

however, there are only monetary fines on non-compliance. Chongqing and Tianjin ETS set no 

monetary penalties for non-compliance at all, but disqualify non-compliant entities from 

associated subsidies or rewards for the next three years.  

The compliances of regulated enterprises in any local ETS follow a specific calendar. At the 

beginning of year T in each ETS pilot, the regulated enterprises receive their allocations for 

year T. The regulated enterprises have to submit their emission reports to the regulator in March 

or the end of February, dates varying with pilots, and then ask a third party to verify the reports. 

In April, the regulated enterprises should submit the verified emission reports, and in June, 

they have to submit the allowances valid during year T-1 which should not go over the 

allocations for year T-1. So, the trading of emission allowances is relatively active between 

April and June of year T.  

4 Method 

4.1 Data 
Carbon market (i.e. ETS market) data is collected from the website (www.tanpaifang.com) 

organized by Zhongke Carbon Information Technology Research Institute. The website was 

created in 2012, providing data, regulatory information and consultancy about ETS. Market 

data of China’s piloting ETS that the website publicizes are daily carbon prices and daily 

trading volume. As China’s ETS pilots allow for only spot trading, all price and transaction 

volume data are spot trading data. Market data of China’s seven ETS markets can also be found 



from the website (www.chinacarbon.net.cn) organized by Climate Limited, which is a UN 

accredited online media company and a member of International Emissions Trading 

Association (IETA). Market data of China’s ETS from the two sources are identical. This study 

collected the daily market data of the seven ETS pilots from their starting time points (see 

Table 1), to 30 June 2016, when valid allowances had been submitted for the recent compliance 

year (i.e.2015). The currency unit of all data is changed from RMB (￥) to US dollar ($), using 

the currency conversion rates provided by OECD. As the carbon price data are missing for 

some days, weekly carbon price data (Pricet, $/ton CO2e) are generated for analysis. Further, a 

time-series variable of lnReturnt is generated for each pilot using the equation lnReturnt= 

ln(Pricet/Pricet-1).  

On energy markets, the oil and coal price series are used. The currency unit is all converted to 

US dollar ($) as well. The oil price, Brent ($/barrel), is the weekly Europe Brent Spot Price for 

crude oil and petroleum products, published by US Energy Information Administration. The 

coal price is the domestic Bohai Rim 5500 kcal stream coal price (Coalt, $/ton, weekly) based 

on the average price of 5500 kcal coal at Qinhuangdao, Tianjin, Caofeidian, Jingtang, 

Huanghua and Guotoujingtan ports. The data is published by Qinhuangdao Maritime Coal 

Market Co., Ltd8.  

4.2 Empirical analysis methods 
Time series analysis techniques are applied to test the hypotheses. The Akaike Information 

Criterion (AIC) is used as the criteria for choosing the number of lags in all tests. 

4.3.1 Testing for efficient market hypothesis  

In its weak form, EMH assumes that, in an informationally efficient market, price changes are 

random and unforecastable. To test the hypothesis (Hypothesis 1), Augmented Dickey Fuller 

(ADF) tests were applied based on lnReturnt series to check the randomness of price returns. 

                                                
8 Data is available at: http://osc.cqcoal.com/ListInfo.jsp?id=V02&curPage=8. 



lnReturnt data are preferred for EMH analysis compared to price data as lnReturnt data are 

analytically more tractable and more useful to investors (Mobarek and Keasey 2000). If 

lnReturnt series follow a random walk (a.k.a. having a unit root), it implies a weak-form market 

efficiency. If a random walk is not found, lnReturnt is predictable from the past returns, which 

can be the basis of profitable investment rule (Mobarek and Keasey 2000). ADF test was 

performed in three forms: random walk model with drift, random walk model with 

deterministic trend, and pure random walk model. The Philips-Perron (PP) test was also applied 

as a robustness check.  

4.3.2 Short-and long-run dynamics between markets 

To test Hypothesis 2 and 3, we used Engle-Granger Augmented Dickey-Fuller (EG-ADF) test 

based on natural logarithm price series. EG-ADF test for co-integration between Xt and Yt 

included two steps. First, it estimates the coefficients of the regression Yt=a0+a1Xt+ εt by OLS 

estimator. a1 is the so-called co-integrating coefficient. When there is a significant 

autocorrelation issue in addition to possible heteroscedasticity, Newey–West estimator is used 

instead to produce consistent estimates. Second, it uses ADF test to test for the unit root of the 

residual series εt. If the hypothesis that ut has a unit root is rejected, Xt and Yt are co-integrated, 

and the stationary linear combination (εt= Yt -a1Xt) suggests a long-run equilibrium relationship. 

The EG-ADF test was run between every two local ETS market of China, using logarithm 

emission allowance price (lnPricet). We also used the same methods to identify the co-

integration relationships between ETS markets and energy markets, on the basis of the 

logarithm coal price (lnCoalt) and the logarithm oil price (lnBrentt). 

Further, we identified the co-integration relationships of multiple markets, using Johansen’s 

multivariate test and VECM method. The Johansen’s multivariate test could identify the co-

integration ranks of multiple variables. Subsequently, based on the co-integration ranks, the 

Vector Error-Correction Model (VECM) could find the co-integration equations of the co-



integrated variables. With the VECM technique, we analyzed the short-run and long-run 

dynamics of variables.   

A simple VECM model can be displayed using the equations (1) - (2). The term ε" = 𝑌" − 𝜃𝑋" 

is the error correction term. 

∆Y" = 𝛽+, + 𝛽++∆Y".+ + ⋯+ 𝛽+0∆Y".0 + 𝛿++∆𝑋".+ + ⋯+ 𝛿+0∆𝑋".0 + 𝜎++ 𝑌".+ − 𝜃𝑋".+ + 𝑢+" (1) 

∆X" = 𝛽5, + 𝛽5+∆Y".+ + ⋯+ 𝛽50∆Y".0 + 𝛿5+∆𝑋".+ + ⋯+ 𝛿50∆𝑋".0 + 𝜎5+ 𝑌".+ − 𝜃𝑋".+ + 𝑢5" (2) 

4.3.3 Time series regressions and structural breaks 

To further discuss the influence of energy price changes and structural breaks on carbon price 

changes, time series regressions were performed using the technique of adjusted 

Autoregressive Distributed Lag (ADL) model with multiple repressors. And, the regressions 

were estimated with the robust. If there is a significant serial correlation problem, the Newey-

West heteroscedasticity-and-autocorrelation-consistent estimator should be used. 

As shown in Figure 1, carbon price series in China have large fluctuations around week 26 (30 

June-7 July), 2014, and some fluctuations around week 26 (29 June-7 July), 2015, both close 

to the due dates for submitting valid allowances. For instance, the carbon price of Beijing had 

a sudden spike around week 26 2014. However, Carbon price series in any ETS pilot of China 

do not have so obvious structural breaks as what happened in EU ETS. To test whether there 

are significant structural breaks over the two periods, the Wald likelihood ratio test has been 

run on the natural logarithm prices series. The tests indicate that, for all pilots except 

Chongqing and Hubei, there is a significant structural break over the week 26 2014. Chongqing 

ETS started from June 2014, so there are few observations before week 26, 2014. For Beijing, 

Guangdong and Hubei, lnPricet also has a significant structural break over the week 26, 2015. 

In our regressions, we use two dummy variables, Break14 and Break15, to define the two 

breaks. Break14 has a value of 1 if it is after the week 26, 2014. Otherwise, Break14 is 0. 

Break15 has a value of 1 if it is after the week 26, 2015. Otherwise, its value is 0. So there are 



three sub-periods in the dataset, June 2013-June 2014 (1st Year), July 2014-June 2015 (2nd 

Year), and July 2015-June 2016 (3rd Year).  

Therefore, the following specification is introduced: 

lnReturn=," = 𝑎=,, + 𝑎=,+ 𝐿𝐷 𝑙𝑛𝑅𝑒𝑡𝑢𝑟𝑛=," + 𝑎=,5 𝐿𝐷 ln𝐵𝑟𝑒𝑛𝑡" + 𝑎=,I 𝐿𝐷 𝑙𝑛𝐶𝑜𝑎𝑙" + 𝑎=,L𝐵𝑟𝑒𝑎𝑘14 

                                  +𝑎=,P𝐵𝑟𝑒𝑎𝑘15 + 𝑎=,R𝐵𝑟𝑒𝑎𝑘14 ∗ ln𝐵𝑟𝑒𝑛𝑡" + 𝑎=,T𝐵𝑟𝑒𝑎𝑘14 ∗ ln𝐶𝑜𝑎𝑙" 

                                  +𝑎=,U𝐵𝑟𝑒𝑎𝑘15 ∗ ln𝐶𝑜𝑎𝑙" + 𝑎=,V𝐵𝑟𝑒𝑎𝑘15 ∗ 𝑙𝑛𝐶𝑜𝑎𝑙" + µμ=,". (3) 

In the equation, lnReturni,t is the price return of emission allowance at time period t in the ETS 

pilot i. Price return series are used because they are stationary. L denotes the lag operator. D 

denotes the first difference. µi,t is the error term. 

5 Results 
5.1 Descriptive statistics and price volatility 
The descriptive statistics are shown in Table 1. Shenzhen ETS and Beijing ETS had the highest 

carbon prices on average, which were 8.40 and 7.84 $/ton CO2e respectively, followed by 

Guangdong, 4.99 $/ton CO2e. Hubei, Tianjin and Shanghai had similar carbon prices on 

average, which were respectively 3.75, 3.95 and 4.00 $/ton CO2e. Chongqing had the lowest 

average carbon price, 3.32 $/ton CO2e. From Figure 1, we can see that there was a general 

decrease trend of carbon price over time in every ETS pilot. Take Shenzhen ETS as an example. 

Its carbon prices were at a level of more than 10 $/ton CO2e during June 2013 to June 2014. 

Then, the carbon price gradually decreased to about 5 $/ton CO2e by the end of 2014 since the 

submission of verified emissions in the first compliance year. From the end of 2014 to June 

2016, the carbon price reached a relative stable status, ranging between 5-8 $/tonCO2e.  

[Figure 1 here] 

[Table 1 here] 

The realized price volatility is analyzed by calculating the standard deviation of inter-day 

lnReturnt series in order to measure the overll risk of the market. Overall, the ETS pilots in 

China all had a high price volatility, ranging from 0.02 to 0.13, which can be seen from Figure 



2. As a contrast, the realized price volatility in EU ETS from 2008 to 2011 was about 0.024, 

calculated as the standard deviation of daily lnReturnt of carbon futures (Byun and Cho 2013).  

Full sample analysis show that, Shanghai ETS and Guangdong ETS exhibit the highest price 

volatility, which is about 0.10, followed by Tianjin (0.09) and Shenzhen (0.09). Hubei ETS, 

on the other hand, displays the lowest price volatility of 0.04. In each ETS pilot, the realized 

price volatility changes over different compliance years. For instance, carbon price of Beijing 

ETS had a relatively low volatility in the first two years, but experienced a much higher level 

of volatility in the third year. Chongqing, Hubei and Shanghai also had an increasing price 

volatility over time. Guangdong ETS had a highly volatile price changes (with a volatility as 

0.13) in 2014-2015, which was twice the volatility level (0.05) in 2013-2014 but decreased to 

0.08 in 2015-2016. Shenzhen ETS had a high price volatility level (0.12) in the first year, which 

significantly decreased in the second year but slightly increased again in the third year. The 

price volatility of Tianjin ETS changed in the same pattern.  

[Figure 2 here] 

5.2 Testing for efficient market hypothesis 
Table 2 displays the unit test results of price returns (lnReturnt) using ADF method. If the ADF 

test is significant, we reject the hypothesis that lnReturnt has a unit root and the EMH is violated. 

The tests were performed for the full period and the sub-periods. However, we can see from 

Table 2 that, the EMH is significantly rejected for all ETS pilots, except Tianjin ETS. Therefore, 

all the other six ETS markets were inefficient, no matter based on full period analysis or sub-

period analysis.  

Regarding Tianjin ETS, the full period analysis found that the market was significantly 

inefficient over the full sample period. The sub-period analysis then found the development of 

Tianjin ETS from an inefficient market to an efficient market. While lnReturnt did not follow 

a random walk in the first two years, a unit root of lnReturnt was found in the third year (July 



2015-June 2016), implying a weak-form efficient market. However, the finding needs to be 

taken cautiously. In emerging and non-competitive markets, such as ETS markets, infrequent 

or “thin” trading can bias the result of EMH analysis (Montagnoli and de Vries 2010). Tianjin 

ETS only has about 110 enterprises regulated by ETS, and according to the trading volume 

data that we collected, Tianjin ETS had zero trading volume during 12% of the 131 weeks that 

we observed, which can be the evidence of infrequent trading to some extent.  

[Table 2 here] 

5.3 Analysis of short- and long-run causal effects 
5.3.1 Relations between two markets 

The results of co-integration tests are displayed in Table 3 and Table 4. Table 3 show the results 

of co-integration tests between two markets during the full sample period, using EG-ADF test. 

The test was performed only using logarithmic price series that are integrated of order one 

during the full sample period. lnPricet of Beijing ETS (lnBJPricet) and that of Shenzhen ETS 

(lnSZPricet) are integrated of order zero. So, they are not involved in the co-integration tests. 

If two variables, Xt and Yt, are co-integrated, their stationary linear combination, (Yt -a1Xt) 

implies a long-term equilibrium relationship between Xt and Yt, with a1 as the co-integrating 

coefficient. Table 4 show the identified co-integration relationships of multiple markets, using 

a combination of Johansen’s test and VECM method.  

We can see from Table 3 that Hypothesis 2 does not hold for every two local ETS markets. 

Based on results of EG-ADF test, eight co-integration relationships were identified between 

two local ETS markets. There are respectively (1) the co-integration of lnPricet series between 

Chongqing ETS and Guangdong ETS at 5% significance level, (2) the co-integration between 

Chongqing and Shanghai at 1% level, (3) the co-integration between Chongqing and Tianjin 

at 5% level, (4) the co-integration between Guangdong and Shanghai at 5% level, (5) the co-

integration between Guangdong and Tianjin at 1% level, (6) the co-integration between 



Shanghai and Hubei at 10% level, (7) the co-integration between Tianjin and Hubei at 1% level, 

and (8) the co-integration between Shanghai and Tianjin at 5% level.  

When testing for the co-integrations between ETS market and energy markets, Hypothesis 3 

does not hold for every pair of a ETS market and an energy market either. The results also 

suggest eight significant co-integration relationships. The lnPricet series of Chongqing ETS 

(lnCQPricet) was found to be co-integrated with logarithmic coal price series (lnCoalt) at 5% 

significance level and co-integrated with logarithmic oil price series (lnBrentt) at 5% level. 

Also, the lnPricet series of Guangdong ETS (lnGDPricet) was significantly co-integrated with 

lnBrentt at 5% level and co-integrated with lnCoalt at 10% level. Further, the logarithmic price 

series of Shanghai ETS (lnSHPricet) was found to be significantly co-integrated with lnBrentt 

and lnCoalt, respectively. Similarly, Tianjin ETS (lnTJPricet) was significantly co-integrated 

with both lnBrentt and lnCoalt.  

[Table 3 here] 

5.3.2 Relations of multiple markets  

A co-integration relationship can also involve multiple markets. Table 4(1) displays the results 

of Johansen’s test involving logarithmic price series of five ETS pilots and the two energy 

markets. So, the test identified three co-integration relationships at 5% significance level based 

on the full period analysis. The VECM method was employed subsequently to estimate the 

three co-integration equations, as shown in Table 4(2). The error correction terms, εt1, εt2 and 

εt3 are on the left side of the equations. So the identified co-integration equations are: 

 

ε"+ = lnCQPrice" − 0.40lnSHPrice" − 0.71lnTJPrice" + 0.29lnCoal" − 1.08lnBrent" + 3.51         (4) 

ε"5 = lnGDPrice" + 0.77lnSHPrice" − 0.78lnTJPrice" − 3.42lnCoal" − 0.25lnBrent" + 14.67       (5) 

ε"I = lnHBrice" + 0.02lnSHPrice" − 1.07lnTJPrice" + 2.32lnCoal" − 1.43lnBrent" − 3.80            (6) 

 



The coefficients on εt1 in the equations of first-differenced logarithmic price series 

D_lnCQPricet, D_lnGDPricet, D_lnHBPricet, D_lnSHPricet, D_lnTJPricet, D_lnCoalt, and 

D_lnBrentt can be shown in an adjustment matrix σ+o= [ 0.003, -0.299**, 0.063, 0.229*, -

0.177**, 0.041***, 0.142**]9. The adjustment matrix for εt2 and that for εt3 are 𝜎5p= [ -0.012***, 

-0.057, 0.046**, -0.090**, 0.057**, 0.006, 0.015] and 𝜎Ip= [ -0.038***, 0.262***, -0.030, -

0.278***, 0.159***, -0.037***, -0.064]. 

[Table 4 here] 

For the equation of εt1, the coefficient on lnBrentt is statistically significant, and so is the 

adjustment parameter on D_lnGDPricet, D_lnSHPricet, D_lnTJPricet, and D_lnCoalt. 

Therefore, lnBrentt respectively has a long-run equilibrium effect on lnGDPricet, lnSHPricet, 

lnTJPricet, and lnCoalt.  

For the equation of εt2, the coefficients on lnCoalt and lnSHPricet are statistically significant, 

as are the adjustment parameters on D_lnCQPricet, D_lnHBPricet, D_lnSHPricet, and 

D_lnTJPricet. The significant adjustment parameters imply rapid adjustments toward 

equilibriums. So, lnCoalt and lnSHPricet have long-run equilibrium effects respectively on 

lnCQPricet, on lnHBPricet, on lnSHPricet, and on lnTJPricet. 

For the equation of εt3, the coefficient on lnBrentt is statistically significant at 1% level, and the 

coefficient on lnTJPricet is weakly significant at 10% level. The adjustment parameters on 

D_lnCQPricet, D_lnGDPricet, D_lnSHPricet, D_lnTJPricet, and D_lnCoalt are also 

significant, indicating rapid adjustments toward equilibriums. Thus, lnBrentt and lnTJPricet 

have long-run equilibrium effects respectively on lnCQPricet, on lnGDPricet, on lnSHPricet, 

on lnTJPricet and on lnCoalt.  

To sum up, the oil price has long-term equilibrium effects on the carbon prices of Chongqing 

ETS, Guangdong ETS, Hubei ETS, Shanghai ETS and Tianjin ETS; the coal price has a long-

                                                
9 *, **, and *** denote significance at 1%, 5% and 10% levels 



term equilibrium effect on carbon prices of Chongqing ETS, Hubei ETS, Shanghai ETS and 

Tianjin ETS. Regarding long-term effects between ETS markets, the carbon price of Shanghai 

ETS exhibits long-term equilibrium effects on the carbon prices of Chongqing ETS, Hubei 

ETS, Shanghai ETS and Tianjin ETS. Also, the carbon price of Tianjin ETS exhibits the weakly 

significant long-term equilibrium effects on the carbon prices of Chongqing ETS, Guangdong 

ETS, Shanghai ETS, and Tianjin ETS.  

Table 4(3) display the results of joint significance tests of short-run coefficients of VECM, 

which provide evidence for the short-run effect/granger causality between price changes. In 

the equation of lnSHPricet, the joint F-test of the coefficients on all values of lnBrentt is 

significant at 5% level, while in the equation of lnBrentt, the joint F-test of the coefficients on 

all values of lnSHPricet is not significant. This suggests a unidirectional short-run granger 

causality from oil price to Shanghai carbon price. Also, the values of lnBrentt are jointly 

significant in the equation of lnCQPricet, whereas the values of lnCQPricet are not jointly 

significant in the equation of lnBrentt, implying a unidirectional short-run granger causality 

from oil price to Chongqing carbon price.  

Regarding short-run dynamics between two ETS pilots, the values of lnSHPricet are jointly 

significant in the equation of lnHBPricet, but the values of lnHBPricet are not jointly significant. 

So, the Shanghai carbon price has a short-run effect on the Hubei carbon price, but the reverse 

is not true. Also, the Shanghai carbon price has a short-run unidirectional effect on the Tianjin 

carbon price. In addition, there is a short-run unidirectional granger causality from the Hubei 

carbon price to the Tianjin carbon price.  

5.4 Regression analysis and structural breaks  
Table 5 displays the regressions of carbon price returns on energy price returns and structural 

break dummies. All logarithmic price return series in the regressions are stationary. The 

regressions are estimated using the robust estimator rather than Newey-West estimator as there 



is no significant serial correlation problem. Joint F-tests are used to test the joint significance 

of coefficients on all values of a variable, and the results can be found from the last four rows 

of Table 5. The joint F- test results are mainly commented.  

Regarding influence of energy price change on carbon price change, the joint F-tests show that 

D_lnBrentt is weakly significant in the equation of Beijing’s carbon price return lnBJReturnt, 

but it is not significant in other equations. D_lnCoalt exhibits a significant joint effect on 

Guangdong’s carbon price return lnGDReturnt, and a significant joint effect on Hubei’s carbon 

price return lnHBReturnt.  

In terms of influences of structural break dummies, Break14 has a negative coefficient at 10% 

significance level in the equation of lnBJReturnt, implying a weakly significant decrease of 

carbon price return after the June 2014 break. But, the joint F-test of Break14 and its interaction 

terms is not statistically significant. In the equation of lnGDReturnt, the coefficient on Break14 

is negative and significant at 1% level, suggesting a significant collapse of carbon price return 

after the June 2014 break as well. And, the joint F-test of coefficients on all terms of Break14 

is jointly significant at 5% level. Break15 has a significant yet positive coefficient in 

lnGDReturnt equation, indicating a sudden increase of carbon price return after the June 2015 

break in Guangdong. The joint F-test of Break15, however, is not significant. In the equation 

of lnSHReturnt, the coefficient on Break14 is negative and weakly significant, so is the joint 

F-test of Break14 and its interaction terms. In addition, the joint F-tests of all terms of Break15 

show that Break15 has a joint significant effect on lnBJReturnt at 10% level, and also a joint 

significant effect on lnHBReturnt. In short, based on joint F-tests, Beijing and Hubei 

respectively have a significant structural change in carbon price return before and after the end 

of June 2014, while Guangdong and Shanghai respectively have a significant structural break 

in the carbon price return over the end of June 2015.  

[Table 5 here] 



6 Discussion and concluding remarks 

This study contributes to the existing literature on ETS by adding empirical evidence in the 

context of China. The particular literature about EU ETS frequently discuss market efficiency, 

price volatility, and price drivers that focus on the influence of energy markets. The 

econometric analysis of the weekly spot carbon price conducted in this study compares carbon 

pricing in the seven ETS pilots of China, examines the efficient market hypothesis, and 

evaluates impacts of two types of price drivers identified in EU ETS which are energy prices 

and institutional design issues.  

The three main findings in this study are summarized as follows. First, full sample analysis 

shows that all local ETS markets in China are not informationally efficient during 2013-2016 

according to the weak-form EMH. The result is consistent with what happened to EU ETS in 

its early days, as Montagnoli and Vries (2010) found that the EU ETS was also inefficient in 

Phase I. The policy design and implementation of the local ETS pilots are not so transparent in 

China. And the trading volumes are generally at a low level and unstable, as the market 

liquidity is poor and the derivatives trading is off-limits.  

The second main finding is that carbon prices between different ETS markets are co-integrated, 

but this is not true for every two ETS markets in China. Co-integration relationships of carbon 

prices exist (1) between Guangdong and Chongqing, (2) between Guangdong and Shanghai, 

(3) between Guangdong and Tianjin, (4) between Shanghai and Chongqing, (5) between 

Shanghai and Tianjin, (6) between Shanghai and Hubei, (7) between Tianjin and Chongqing, 

and (8) between Tianjin and Hubei. So, Tianjin carbon price is co-integrated with carbon prices 

of all the other ETS pilots, except Beijing and Shenzhen. VECM analysis confirmed that 

Tianjin carbon price has a weakly significant long-term equilibrium effect respectively on 

carbon prices of Guangdong, Chongqing and Shanghai; Shanghai carbon price has a significant 

long-run equilibrium effect respectively on carbon prices of Chongqing, Hubei and Tianjin. 



The existence of these co-integration relationships between local ETS markets in China may 

be good for linking different local ETS markets. 

Third, energy prices have both short- and long-run dynamic effects on carbon prices of the ETS 

markets in China. In particular, the EG-ADF analysis found that coal price is respectively co-

integrated with carbon prices of Guangdong, Chongqing, Shanghai, and Tianjin; oil price is 

respectively co-integrated with the carbon prices of Guangdong, Chongqing, Shanghai, and 

Tianjin. Further, the Johansen’s multivariate test and VECM analysis confirmed that oil price 

has a significant long-run equilibrium effect respectively on carbon prices of Guangdong, 

Chongqing, Shanghai and Tianjin, so does coal price. In addition, the analysis of short-run 

dynamics found that there are unidirectional short-run granger causal relationships from oil 

price to Chongqing carbon price, and from oil price to Shanghai carbon price. Besides, 

Shanghai carbon price has a unidirectional short-run granger causal effect on Hubei carbon 

price and Tianjin carbon price, respectively; Hubei carbon price has a unidirectional short-run 

effect on Tianjin carbon price. These findings have implications for the regulators of ETS 

markets in China who need to concern about the source of price volatility from energy price 

fluctuations.  

Concerning “compliance breaks”, we also analyzed two structural break dummies surrounding 

the two dates, 30 June 2014 and 30 June 2015, when the regulated entities have to submit the 

valid allowances of the last year to regulators. Regression analysis using adjusted multivariate 

ADL model found that the carbon price returns of Beijing ETS and Hubei ETS have significant 

structural changes around June 2014, whereas the carbon price returns of Guangdong ETS and 

Shanghai ETS have significant structural breaks around June 2015. This finding serves as an 

evidence that carbon prices are driven by institutional decisions in those pilots.  

Descriptively, the carbon prices in each ETS pilot of China are far less than the ideal prices 

that can cause substantial low-carbon actions. According to a government official in China’s 



NDRC, the carbon price should ideally be 30-45 $/ton in order to motivate enterprises to take 

strategic actions10. However, even in Shenzhen, the highest carbon price was less than 20$/ton 

CO2e over the history of price development. Regarding Shanghai ETS, its minimum carbon 

price was only 0.68$/ton CO2e, which provided poor incentive for emitters to invest in low-

carbon technologies. In that case, even if an enterprise reduces emissions that are equivalent to 

10000ton emission allowance by introducing low-carbon technologies, which is hard and 

costly, the enterprise can only earn 6800$, which is a tiny number to a middle-to-large 

enterprise. What’s worse, the volatility of carbon prices in China is generally high and varies 

with different ETS pilots. As a comparison, the price of carbon futures in EU ETS during Phase 

II (2008-2012) was about 23.64 $/ton CO2e on average (Daskalakis 2013). And in particular, 

the carbon futures price was 25.49 $/ton CO2e in December 2009, 23.04 $/ton CO2e in 

December 2010, 23.43 $/ton CO2e in December 2011 and 22.57 $/ton CO2e in December 2012 

(Daskalakis 2013). Nonetheless, the carbon price in EU ETS decreases to a low level in Phase 

III (2013-2020). According to World Bank (2015; 2016), the carbon price in EU ETS was only 

8$/ton CO2e or so in April 2015, and 6$/ton CO2e or so in April 2016, which were quite similar 

to the carbon price in Shenzhen ETS during the same time. Given the low carbon prices, the 

ETS has to be complemented with other policy instruments to motivate significant low-carbon 

actions.  

 

 

 

 

 

                                                
10 http://www.tanpaifang.com/tanjiaoyi/2016/0620/53811.html 
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Tables and Figures 

Table 1 Descriptive statistics 

/ Market 
Full period 

Obs. Mean Std. 
Dev. Min Max P(Skew.) P(Kurt.) adj Chi2 From 

Pricet  

BJ  28-Nov-13 135 7.84 1.27 5.34 12.51 0.04 0.01 9.34*** 
CQ  19-Jun-14 107 3.32 1.44 1.51 5.29 0.74 -- . 
GD  16-Dec-13 132 4.99 3.19 1.36 12.05 0.00 0.00 21.75*** 
HB  2-Apr-14 118 3.72 0.46 2.19 4.40 0.00 0.00 34.38*** 
SH  26-Nov-13 132 4.00 2.20 0.68 7.81 0.87 0.00 . 
SZ  18-Jun-13 158 8.40 2.73 4.68 18.36 0.00 0.95 13.63*** 
TJ  26-Dec-13 131 3.95 0.91 1.52 7.42 0.00 0.00 19.92*** 

Brentt Europe  18-Jun-13 158 75.89 29.64 27.76 116.03 0.99 -- -- 

Coalt 
 China,  

Qinhuangdao 18-Jun-13 158 76.22 13.03 55.84 101.84 0.69 0.00 -- 

lnReturnt 

BJ  28-Nov-13 134 0.00 0.07 -0.21 0.22 0.01 0.00 18.42*** 
CQ  19-Jun-14 106 -0.01 0.05 -0.30 0.10 0.00 0.00 73.47*** 
GD  16-Dec-13 131 -0.01 0.10 -0.31 0.29 0.84 0.00 7.45** 
HB  2-Apr-14 117 0.00 0.04 -0.18 0.15 0.37 0.00 14.97*** 
SH  26-Nov-13 131 -0.01 0.10 -0.36 0.27 0.31 0.00 10.29*** 
SZ  18-Jun-13 157 0.00 0.09 -0.27 0.42 0.00 0.00 30.69*** 
TJ  26-Dec-13 130 -0.01 0.09 -0.54 0.29 0.00 0.00 40.02*** 

D.lnBrentt Europe  18-Jun-13 157 0.00 0.04 -0.16 0.16 0.15 0.00 13.88*** 

D.lnCoalt 
 China,  

Qinhuangdao  18-Jun-13 157 0.00 0.01 -0.04 0.03 0.80 0.00 9.44*** 

Note: Full sample period started from the first operation date of the ETS pilots till 30 June 2016 when the regulated entities submitted the 
valid allowances of 2015 to the regulators. “BJ” is short for Beijing ETS, “CQ” for Chongqing ETS, “GD” for Guangdong ETS, “HB” for 
Hubei ETS, “SH” for Shanghai ETS, “SZ” for Shenzhen ETS, and “TJ” for Tianjin ETS. “Std. Dev.” indicates standard deviation; “Obs.” 
indicates the number of observations. Pricet refers to a time-series variable of weekly carbon prices. Brentt refers to the Europe Brent Spot 
Price for crude oil and petroleum products. Coalt refers to Qinhuangdao 5500kcal/kg steam coal price in China. lnReturnt refers to the 
logarithmic form of price returns. lnReturnt= ln(Pricet/Pricet-1). D.lnBrentt and D.lnCoalt are respectively first logarithm differenced  oil price 
series and coal price series, indicating oil price returns and coal price returns. Pr(Skew.), Pr(Kurt.) and adj Chi2 display the results of 
Skewness-Kurtosis tests (sktest) in Stata. Skew. denotes skewness, and Kurt. denotes kurtosis. The null hypothesis of sktest is that the data 
follow normal distribution. The statistic of sktest is adjusted Chi squares (adj Chi2). *** and ** denote significance at 1% and 5% levels. “-
-” denotes the statistics are not available due to the characteristics of the original data.  

 

  



Table 2 Test for unit root of price returns 

Price return Obs 
ADF, 
simple PP, simple ADF, 

with trend 
PP, with 

trend 
ADF, with 

drift Integ.Order 
Z(t) Z(t) Z(t) Z(t) Z(t) 

lnBJReturnt Full period 134 -7.176*** -10.602*** -7.152*** -10.556*** -7.176*** I(0) 
 1st Year 30 -0.559 -3.576*** -0.492 -3.965* -0.559 I(1) 
 2nd Year 52 -5.267*** -5.659*** -5.135*** -5.532*** -5.267*** I(0) 
 3rd Year 52 -5.196*** -7.118*** -5.140*** -7.024*** -5.196*** I(0) 

lnCQReturnt Full period 106 -6.607*** -7.872*** -6.587*** -7.846*** -6.607*** I(1) 
 2nd Year 52 -4.023*** -5.286*** -4.617*** -5.821*** -4.023*** I(1) 
 3rd Year 52 -4.869*** -5.602*** -4.848*** -5.568*** -4.869*** I(0) 

lnGDReturnt Full period 131 -6.760*** -9.801*** -6.724*** -9.761*** -6.760*** I(1) 
 1st Year 27 -4.564*** -6.215*** -4.536*** -6.098*** -4.564*** I(0) 
 2nd Year 52 -4.297*** -5.408*** -4.296*** -5.346*** -4.297*** I(0) 
 3rd Year 52 -5.560*** -8.015*** -5.956*** -8.380*** -5.560*** I(1) 

lnHBReturnt Full period 117 -8.308*** -13.550*** -8.407*** -13. 628*** -8.308*** I(1) 
 1st Year 13 -3.046** -4.393*** -2.871 -4.284*** -3.046*** I(0) 
 2nd Year 52 -5.561*** -8.194*** -5.505*** -8.113*** -5.561*** I(0) 
 3rd Year 52 -5.656*** -9.433*** -5.690*** -9.444*** -5.656*** I(1) 

lnSHReturnt Full period 131 -6.696*** -9.781*** -6.709*** -9.769*** -6.696*** I(1) 
 1st Year 27 -4.132*** -4.541*** -4.728*** -4.755*** -4.132*** I(0) 
 2nd Year 52 -5.664*** -7.799*** -5.826*** -7.864*** -5.664*** I(1) 
 3rd Year 52 -4.280*** -4.976*** -4.259*** -4.984*** -4.280*** I(0) 

lnSZReturnt Full period 158 -9.572*** -12.078*** -9.697*** -12.153*** -9.572*** I(0) 
 1st Year 54 -5.790*** -6.280*** -6.345*** -6.570*** -5.790*** I(0) 
 2nd Year 52 -5.769*** -7.960*** -5.882*** -7.995*** -5.769*** I(0) 
 3rd Year 52 -4.971*** -8.169*** -4.936*** -8.101*** -4.971*** I(0) 

lnTJReturnt Full period 130 -5.669*** -6.477 *** -5.712** -6.509*** -5.669*** I(1) 
 1st Year 26 -3.990*** -3.868*** -3.927** -3.755** -3.990*** I(0) 
 2nd Year 52 -3.191** -3.770*** -3.171* -3.708** -3.191*** I(0) 
 3rd Year 52 1.151 -2.321 0.241 -3.039 1.151 I(1) 

Note: lnReturnt= ln(Pricet/Pricet-1), denoting the price returns of carbon emission allowance. “BJ” is short for Beijing ETS, “CQ” for 
Chongqing ETS, “GD” for Guangdong ETS, “HB” for Hubei ETS, “SH” for Shanghai ETS, “SZ” for Shenzhen ETS, and “TJ” for Tianjin 
ETS. “Obs.” indicates the number of observations. Augmented Dickey–Fuller (ADF) unit-root tests were performed with time trend, with 
drift, without time trend or drift. Phillips–Perron (PP) unit root tests were performed with and without time trend. “Z(t)” refers to the statistic 
of ADF or PP unit root test. *, ** and *** denote significance at 1%, 5% and 10% levels. Full sample period started from the first operation 
date of the ETS pilots till 30 June 2016. “1st Year” refers to the period from June 2013 to 30 June 2014. “2nd Year” refers to the period during 
July 2014-June 2015. “3rd Year” refers to the period during July 2015-June 2016. The lag options for the tests are selected based on AIC, but 
the lags are not presented to simplify the exposition. In addition, tests for unit roots of logarithm prices were performed to find the integration 
order of the logarithm prices, and “Integ.Order” reports the integration order accordingly.  
 
  



 
Table 3 Co-integration relationships of prices between two markets 

Logarithm Price EG-ADF test  
ADF test of residuals Test statistic Co-integrated? 

ETS market vs. ETS market 

lnCQPricet vs. lnGDPricet ADF, drift -2.27** Yes 
lnCQPricet vs. lnHBPricet ADF, drift -1.16 No 
lnCQPricet vs. lnSHPricet ADF, drift -3.16*** Yes 
lnCQPricet vs. lnTJPricet ADF, drift -1.87** Yes 
lnGDPricet vs. lnHBPricet ADF, drift -0.97 No 
lnGDPricet vs. lnSHPricet ADF, drift -2.19** Yes 
lnGDPricet vs. lnTJPricet ADF, drift -2.65*** Yes 
lnSHPricet vs. lnHBPricet ADF, drift -1.63* Yes 
lnTJPricet vs. lnHBPricet ADF, drift -2.38*** Yes 
lnSHPricet vs. lnTJPricet ADF, drift -2.24** Yes 

ETS market vs. Energy 
market 

lnCQPricet vs. lnCoalt ADF, drift -2.00** Yes 
lnGDPricet vs. lnCoalt ADF, drift -1.33* Yes 
lnHBPricet vs. lnCoalt ADF, drift -0.46 No 
lnSHPricet vs. lnCoalt ADF, drift -2.63*** Yes 
lnTJPricet vs. lnCoalt ADF, drift -2.29** Yes 

lnCQPricet vs. lnBrentt ADF, drift -1.87** Yes 
lnGDPricet vs. lnBrentt ADF, drift -1.84** Yes 
lnHBPricet vs. lnBrentt ADF, drift -0.37 No 
lnSHPricet vs. lnBrentt ADF, drift -1.69** Yes 
lnTJPricet vs. lnBrentt ADF, drift -1.89** Yes 

Note: EG-ADF test was used. The test was performed only if the logarithm price series are integrated of order one. The tests were run between 
lnPricet series of every two ETS pilots, between coal price (lnCoalt) and lnPricet, between oil price (lnBrentt) and lnPricet. The integration 
order of lnPricet can be seen in Table 2. “BJ” is short for Beijing ETS, “CQ” for Chongqing ETS, “GD” for Guangdong ETS, “HB” for Hubei 
ETS, “SH” for Shanghai ETS, “SZ” for Shenzhen ETS, and “TJ” for Tianjin ETS.  *, **, and *** denote significance at 1%, 5% and10% 
level. Full sample period started from the first operation date of the ETS pilots till 30 June 2016. For EG-ADF tests, the test procedure and 
test statistics of ADF tests of residuals are reported. The value for “Co-integrated?” is based on 5% significance level. That is, if ADF tests of 
residuals are significant, variables are considered as being co-integrated.  
  
 
  



 
Table 4 Co-integration relationships of prices among multiple markets  

(1)   Johansen’s test for co-integration ranks 

Vars. lnCQPricet, lnGDPricet, lnHBPricet, lnSHPricet, lnTJPricet, lnCoalt, lnBrentt 
Hypothesis 5% Critical value Johansen stat. Lags Obs. 

H0:r=2;H1:r>=3 68.72** 68.52 6 101 H0:r=3;H1:r>=4 43.01 47.21 

 
(2)   Identified co-integration equations based on VECEM method 

Vars. lnCQPricet lnGDPricet lnHBPricet lnSHPricet   lnTJPricet lnCoalt lnBrentt Cons.  

Equations 
(1) εt1 1     -0.40 -0.71 0.29 -1.08*** 3.51 
(2) εt2   1   0.77** -0.78 -3.42** -0.25 14.67 
(3) εt3     1 0.02 -1.07* 2.32 -1.43*** -3.80 

 
(3)   Short-run effects based on VECM method 

Joint F-test D_lnCQPricet D_lnGDPricet D_lnHBPricet D_lnSHPricet D_lnTJPricet D_lnCoalt D_lnBrentt 
Joint F-stat Joint F-stat Joint F-stat Joint F-stat Joint F-stat Joint F-stat Joint F-stat 

D_lnCQPricet 9.61* 6.01 3.64 5.64 3.01 5.44 3.12 
D_lnGDPricet 4.35 10.83* 2.44 7.17 2.79 8.42 5.48 
D_lnHBPricet 2.70 8.81 9.04 7.83 18.97*** 5.41 1.85 
D_lnSHPricet 2.17 2.42 14.15** 5.98 21.44*** 10.60* 8.12 
D_lnTJPricet 4.44 8.53 6.63 3.39 30.89 3.62 2.46 

D_lnCoalt 3.67 8.49 3.27 7.47 7.61 10.29* 6.21 
D_lnBrentt 12.98** 3.23 7.03 15.12*** 4.76 9.96* 7.24 

Note: Logarithm prices (lnPricet) of each ETS market, coal price in its logarithmic form (lnCoalt) and oil price in its logarithmic form (lnBrentt) 

were used for a Johansen’s co-integration test. Table 4(1) displays the result of the Johansen’s test, which indicate that the co-integration rank 
(r) is three at 5% significance level. Table 4(2) displays the identified co-integration equations based on VECM method using 6 lags. On the 
left side of each equation is the error correction term (εt). Table 4(3) displays results of the joint F-tests following VECM analysis, which 
indicate the short-run effects. The tests and analyses were performed for the full sample period started from the first operation date of the ETS 
pilots till 30 June 2016. “Obs.” indicates the number of observations.  “BJ” is short for Beijing ETS, “CQ” for Chongqing ETS, “GD” for 
Guangdong ETS, “HB” for Hubei ETS, “SH” for Shanghai ETS, and “TJ” for Tianjin ETS. *, ** and *** denote significance at 1%, 5% and 
10% levels. The lag options for the tests are selected based on AIC. “r” refers to co-integration rank. “D” denotes the first difference. “Cons.” 
denotes constant terms. “Equ.” refers to co-integration equation.  
  



 
Table 5 ADL regression with multiple predictors, Full period 

 lnReturnt 
 BJ CQ GD HB SH SZ TJ 
 Eq.1 Eq.2 Eq.3 Eq.4 Eq.5 Eq.6 Eq.7 
 Coeff Coeff Coeff Coeff Coeff Coeff Coeff 

L1. lnReturnt 0.091 0.252* 0.009 -0.284* 0.141 0.006 0.353*** 
 (0.099) (0.130) (0.082) (0.167) (0.145) (0.130) (0.122) 

L2.lnReturnt -0.313* -0.051 -0.187** -0.050 -0.207* -0.138* -0.100 
 (0.117) (0.050) (0.091) (0.182) (0.116) (0.076) (0.137) 

L3.lnReturnt 0.107 0.007 -0.274*** -0.161 -0.057 -0.036 -0.162 
 (0.122) (0.050) (0.094) (0.161) (0.086) (0.085) (0.144) 

D_lnBrentt -0.173 0.163 0.492 -0.688** -1.252 1.021 2.619 
 (0.745) (0.193) (1.295) (0.307) (1.269) (0.876) (2.202) 

L1D_lnBrentt 0.258 -0.207 0.001 -0.041 -0.085 0.172 0.049 
 (0.139)* (0.129) (0.172) (0.104) (0.219) (0.146) (0.129) 

D_lnCoalt -0.196 0.558 -0.378 -1.234** -1.347 0.114 -0.422 
 (1.108) (0.612) (1.588) (0.621) (1.733) (1.222) (2.372) 

L1D_lnCoalt -0.374 -0.156 -1.386 -0.203 -1.374 -0.606 -0.612 
 (0.347) (0.313) (1.227) (0.590) (0.910) (0.916) (0.729) 

L2D_lnCoalt 0.330 -0.225 2.599*** 0.191 1.406 -0.895 0.927 
 (0.459) (0.519) (0.963) (0.338) (1.192) (0.727) (0.912) 
        

Break14 -0.015*  -0.053*** 0.008 -0.034* -0.029 -0.003 
 (0.009)  (0.019) (0.007) (0.019) (0.020) (0.027) 

Break15 0.016 -0.0004 0.034** -0.011 0.003 0.013 -0.004 
 (0.013) (0.009) (0.017) (0.008) (0.024) (0.016) (0.017) 

Break14*D_lnBrentt -0.070  -0.527 0.587* 1.625 -1.159 -2.598 
 (0.754)  (1.415) (0.322) (1.324) (0.898) (2.210) 

Break14*D_lnCoalt 0.305  -3.784** 0.646 1.419 0.303 0.217 
 (1.037)  (1.848) (0.688) (1.859) (1.385) (2.483) 

Break15*D_lnBrentt 0.486 -0.226 -0.092 -0.161 -0.543 0.086 -0.198 
 (0.208)** (0.212) (0.545) (0.142) (0.458) (0.297) (0.197) 

Break15*D_lnCoalt -0.945 0.347 0.734 1.528** 1.369 -0.779 -5.098 
 (1.517) (1.098) (2.089) (0.673) (1.584) (1.318) (3.336) 

Constant 0.005 -0.009 0.004 -0.010* 0.016 0.014 -0.004 
 (0.006) (0.006) (0.015) (0.005) (0.010) (0.017) (0.026) 
         

Obs. 131 105 128 114 128 154 127 
R-squ. 0.181 0.143 0.266 0.166 0.102 0.068 0.255 
F-stat. 1.500 1.160 3.160 2.390 1.170 0.800 1.610 
Prob>F 0.123 0.329 0.000 0.007 0.308 0.665 0.087 

Durbin's alternative test 0.357 0.022 0.594 0.086 1.357 2.064 1.144 
BG LM test 0.406 0.025 0.675 0.100 1.533 2.269 1.296 

Procedure ADL, 
robust 

ADL, 
robust 

ADL, 
robust 

ADL, 
robust 

ADL, 
robust 

ADL, 
robust ADL, robust 

         
Joint F-stat of Break14 1.290  3.270** 1.430 2.200* 1.760 0.640 
Joint F-stat of Break15 2.310* 0.910 1.380 2.450* 0.820 0.450 1.240 

Joint F-stat of D_lnBrentt 2.000* 1.820 0.090 1.350 0.830 0.930 0.960 
Joint F-stat of D_lnCoalt 0.550 0.260 4.190*** 3.000** 1.080 0.980 1.140 

Note: Adjusted ADL model with multiple repressor is employed, and the regression is performed with the robust estimator when there is no 
significant serial correlation problem. Otherwise, the Newey- West heteroscedasticity-and-autocorrelation-consistent estimator should be used. 
For each ETS pilot, the price return (lnReturnt) of carbon emission allowance is regressed on its lags, the logarithm difference of oil price 
(D_lnBrentt) and its lags, the logarithm difference of coal price (D_lnCoalt) and its lags, and the two dummies, Break14 and Break15, 
indicating the potential “compliance breaks” surrounding the week 26 2014 and week 26 2015. “BJ” is short for Beijing ETS, “CQ” for 
Chongqing ETS, “GD” for Guangdong ETS, “HB” for Hubei ETS, “SH” for Shanghai ETS, and “TJ” for Tianjin ETS. “Obs.” indicates the 
number of observations. For each equation, the coefficients, standard errors of the coefficients (in parentheses), the R square (R-squ.), the F-
test statistic (F-stat.), the p-value of the F-test (Prob>F) are reported. The statistics of three types of post-estimation tests are also reported: 
Durbin’s alternative test for serial correlation, the Breush-Godfrey (BG) serial correlation Lagrange Multiplier (LM) test, the joint F-test 
statistic (F-stat.). The joint F tests are performed for (1) Break14 and its interaction terms, (2) Break15 and its interaction terms, (3) D_lnBrentt 
and its lags as well as its interaction terms, (4) D_lnCoalt and its lags as well as its interaction terms. *, ** and *** denote significance at 1%, 
5% and 10% levels. The test was performed for full sample period, from the first operation dates of the ETS pilots till 30 June 2016. “D” 
refers to the first difference. “L”, “L2” and “L3” denote the number of lags as 1, 2 and 3. 
  



Figure 1 Weekly average carbon price in seven ETS pilots, China (2013-2016) 
 

 

Figure 2 Price volatility in seven ETS pilots 

 
Note: price volatility is estimated by calculating the standard deviation of lnReturnt. Full sample period started from the first operation dates 
of the ETS pilots till 30 June 2016. “1st Year” refers to the first compliance year starting from June 2013 to June 2014. “2nd Year” refers to the 
second compliance year during July 2014-30 June 2015. “3rd Year” refers to the third compliance year during July 2015-June 2016. “BJ” is 
short for Beijing ETS, “CQ” for Chongqing ETS, “GD” for Guangdong ETS, “HB” for Hubei ETS, “SH” for Shanghai ETS, and “TJ” for 
Tianjin ETS. 
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China, 2013-2016
Weekly Carbon Price in ETS pilots

BJ CQ GD HB SH SZ TJ
1st Year 0.03 0.05 0.02 0.06 0.12 0.12
2nd Year 0.04 0.04 0.13 0.03 0.10 0.06 0.08
3rd Year 0.09 0.06 0.08 0.06 0.12 0.07 0.09
Full sample 0.07 0.05 0.10 0.04 0.10 0.09 0.09
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