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An examination of discrimination and safety and liability risks stemming 

from algorithmic decision-making in AVs   
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Abstract – Algorithms are increasingly entrenched in how decisions are made in society today, 

particularly in autonomous systems – In transportation, algorithms drive the operation of 

autonomous vehicles (AVs) through its environmental perception, decision-making and 

decision execution to yield AVs’ manifold societal benefits, particularly road safety. However, 

algorithmic decision-making is plagued by concerns over bias, ethical considerations, perverse 

incentives of stakeholders and technical issues that shape the programming and implementation 

of these algorithms. These issues stemming from algorithmic decision-making can translate 

into greater safety risks as well as potential societal discrimination imposed by AVs. Due to 

ambiguities in the delineation of responsibilities for the design, manufacture and operation of 

AVs, stakeholders in the supply chain are also exposed to new liability risks for accidents 

involving AVs. This paper first identifies how biases, ethical issues, perverse incentives, and 

technical issues can affect AVs and then explores how these issues affect algorithmic decision-

making in AVs. The paper then examines the potential safety risks, discriminatory outcomes 

and the factors contributing to liability risks of AV stakeholders stemming from algorithmic 

decision-making in AVs, discusses the steps taken by several governments to tackle these risks 

and highlights the outstanding issues that need to be addressed before concluding. The results 

from our analysis indicate that most of the surveyed governments have begun addressing safety 

risks. However, while recognising bias and ethical issues arising from the application of AI in 

AVs, with a few exceptions less has been done to address discriminatory effects and liability 

concerns.  
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1. Introduction 

 

Algorithms are the building blocks for decision-making in various automated and 

autonomous systems that increasingly pervade society today in various sectors such as the 

military, healthcare, and transportation (Arkin et al. 2012; Taeihagh & Lim 2019). 

Autonomous Vehicles (AVs) rely on algorithms to process data and make decisions more 

efficiently and accurately than the typical human driver (Riley 2018; Schwarting et al. 2018), 

potentially reducing the 1.3 million road fatalities that occur worldwide each year that are 

attributed to human errors (NHTSA 2017; Naughton 2018). The prospect of much higher 

road safety, efficiency, mobility, and other benefits has prompted many governments to 

invest heavily in the technology (Pugnetti & Schläpfer 2018; Lim & Taeihagh 2018). 

   

Despite their widespread appeal, algorithmic decision-making in AVs poses several risks to 

society. Firstly, AVs can introduce new safety risks and potentially perpetuate discrimination 

in the allocation of risks among different road users. Many studies have warned and proven 

that data mining processes can result in disparate outcomes and thereby exacerbate 

discrimination (Barocas & Selbst 2016; Selbst 2017) and in AVs, algorithmic bias can lead 

the AV to make decisions that prioritise the safety of certain groups of road users over others. 

Concerns over how AVs should make decisions during unavoidable crashes has prompted 

proposals of ways to design AVs’ algorithms with ethical rules (Liu 2018; Bonnefon et al. 

2016), but these approaches can introduce unintended consequences for both safety and 

discrimination (Goodall 2014; Coca-Vila 2018). Economic incentives of manufacturers and 

other AV entities also motivate the design of algorithms that shape the AV’s decisions to 

maximise profit rather than safety, and technical issues still limit the AV system’s 

performance. However, limited research has explored AV algorithms’ implications for safety 



and discrimination. Secondly, it is unclear how responsibilities and liability will be assigned 

between various AV stakeholders for accidents, exposing AV stakeholders to new liability 

risks (Martínez-Díaz et al. 2019; Mackie 2018).  

 

Given the above issues and research gaps, this study seeks to analyse how bias, ethics, 

economic incentives and technical limitations influence algorithmic decision-making 

processes in ways that can lead to discrimination and increase safety risks to the public. We 

then highlight how ambiguities in responsibility for algorithmic decisions in AVs and 

ambiguities in legal liability frameworks lead to liability risks for various AV stakeholders. 

Lastly, we analyse and compare the steps taken by various governments to address safety 

risks and liability risks posed by AVs. 

 

2. Background  

 

The Society of Automotive Engineers’ (SAE) categorises five levels of vehicle autonomy, 

starting with levels 1 and 2 where the human driver performs most of the dynamic driving 

tasks with the assistance of advanced driver assistance systems. At level 3, the vehicle 

performs all dynamic driving tasks, but the human driver is required to resume control 

occasionally (SAE 2014; Watzenig & Horn 2017;). At levels 4 and 5, vehicles are considered 

highly and fully autonomous respectively as they can perform all the driving tasks without 

human input. Owing to technological advancements in hardware and software systems – 

Improvements in sensor accuracy enables the vehicle to identify obstacles on the road and 

respond to unexpected environmental changes (Cho et al. 2014; AV Working Group 2018); 

Machine-learning (ML) algorithms aided by advancements in computational power, process 

data about its environment to make driving decisions in real-time; and external 



communication networks enable the AV to exchange information with and learn from other 

connected vehicles and infrastructure (Bathaee 2018; Duarte & Ratti 2018; Lim & Taeihagh 

2018). Throughout this study, we focus on vehicles classified under SAE’s levels 4 and 5 of 

autonomy, which we will refer to as “AVs”. 

 

The foundation of decision-making in AVs stems from artificial intelligence (AI) through 

rule-based algorithms, and later included systems with ML capabilities (Bathaee 2018; Osoba 

& Welser IV 2017). The learning process in ML involves forming mathematical correlations 

between the input and output data based on pre-programmed decision-making criterion to 

build an internal model of the world, which is optimised against a new set of data and the 

model yielding the greatest predictive accuracy is selected (Bathaee 2018). In AVs, ML 

algorithms are trained using many input variables including weather conditions, traffic 

signals and the location of obstacles on the road to inform driving decisions to manoeuvre 

safely on roads (Watzenig & Horn 2017; Coppola & Morisio 2016).  

 

However, the design of AVs’ algorithms could yield potentially biased and unethical 

decisions with consequences for safety and discrimination, which are exacerbated by the 

presence of economic incentives that motivate various stakeholders in the AV value-chain 

(Liu 2018; Goodall 2017). Issues in the programming of algorithms are more difficult to 

recognise and correct in ML than rule-based algorithms as the former model highly complex 

logics that are not easily understood by humans (Burrell et al. 2016). Safety risks can also 

arise from software and hardware limitations (Pendleton 2017; Cai et al. 2018). Furthermore, 

determining liability for accidents remains a challenge due to ambiguities in responsibilities 

of different AV stakeholders in the value-chain and ambiguities in liability laws when applied 

to ML systems (Geistfeld 2017; Collingwood 2017). In this study, we examine the 



implications of bias, ethics and economic incentives for safety and discrimination, how 

ambiguities in responsibilities and legal frameworks create liability risks and discuss several 

steps taken to tackle these issues.  

 

3. AVs, safety risks and discrimination 

 

Through a non-exhaustive but comprehensive examining of the literature on AVs, AI, ML 

and algorithms in relation to its key societal concerns, we identified bias, ethics, economic 

incentives, and technical limitations as three key issues that impact algorithmic decision-

making in AVs in ways that can lead to biased or unfair allocations of safety risks that result 

in discrimination, as well as increased safety risks to the public.  

 

3.1. Bias 

 

Bias, a common problem in all computer systems, is referred to as outcomes that 

“systematically and unfairly discriminate” against certain individuals or groups of individuals 

in society (Friedman & Nissembaum 1996) and can be introduced in multiple ways in an AV 

system. Firstly, training data bias may be present when the input data are not statistically 

representative of the overall population, creating inaccurate classifications and statistically 

biased outcomes (Danks & London 2017; Lepri et al. 2017). Secondly, bias may result from 

the selection of sensitive input variables that are not “permitted” by legal and moral standards 

in certain types of decision-making (Danks & London 2017). When sensitive individual-

specific characteristics, such as a person’s age, gender and size, are used by the AV as 

decision-making criteria, the AVs’ algorithms may “penalise” and “privilege” some groups 

of individuals with certain characteristics meet the algorithm’s goals, such as minimising the 



total quantity of harm,2 allocating greater safety risks to these individuals during accidents 

(Liu 2018). Discrimination can be avoided by “arbitrarily and unpredictably” choosing an 

outcome without considering these characteristics, but doing so may be considered unethical 

as it involves “choosing between lives without any deliberation” (Lin 2015).  

 

In addition, intentional discrimination may result when algorithms’ designers and AV 

manufacturers intentionally introduce the above forms of bias to benefit from discriminatory 

outcomes. Decision-makers may exercise their discretion to select an algorithm, distort the 

training data or select “proxies for protected classes” (Kroll et al. 2016) to satisfy their 

individual preferences. In particular, manufacturers may be economically incentivised to 

favour outcomes that are biased towards the safety of AV passengers in order to maximise 

profits from the sale of AVs and to ensure AVs’ commercial success.3 Safety risks may be 

disproportionately allocated towards other groups of individuals, and this is exacerbated by 

the lack of legal frameworks to ensure accountability for the decisions resulting from AVs’ 

algorithmic decision-making processes (Liu 2018). 

 

Several studies have proposed ways to overcome bias and discrimination in autonomous 

systems in general. Technical tools to remove bias include modifying the data, including anti-

discrimination criteria in the algorithm, and modifying algorithmic outputs to reduce or 

remove the effects of bias on certain groups of individuals (Mittelstadt et al. 2016). The 

government in South Korea aims to develop such techniques to detect data bias and correct 

software errors at every stage of AI development (Ministry of Science & ICT 2016) and the 

UK government will collaborate with the Alan Turing Institute to develop AI talent and 

																																																								
2 In Section 3.2, we discuss various types of ethical preferences to which AVs may be programmed to follow 
and their implications of AV safety risks in greater detail. 
3 In Section 3.3, we elaborate on the role of economic incentives in shaping the choice of preferences that are 
programmed into algorithms in AVs.		



auditing tools to mitigate “social inequalities” resulting from algorithmic decision-making 

(DBEIS 2018).  

 

To mitigate algorithmic bias, principles of explainability and verifiability and the importance 

of disclosing information on algorithmic decision-making to the public were emphasised in 

guidelines for AI that were released by governments in Japan and Singapore, where the latter 

also recommended governance practices in operations management and systems design to 

increase the accountability of AI-deploying organisations (The Conference towards AI 

Network Society 2017; PDPC 2018). In the EU, the GDPR prohibits any automated decision 

that utilises sensitive personal data and that notably affects data subjects and also mandates 

the right to explanation, by requiring firms to provide data subjects “meaningful”, “concise”, 

“intelligible” and “accessible” forms of information regarding the logic behind these 

decisions (Goodman & Flaxman 2016, p.6). However, scholars highlight that transparency 

may be insufficient to explain and detect bias in highly complex ML algorithms whose logics 

are not explicitly programmed and not easily interpretable even by programmers themselves 

(Guidotti et al. 2018; Lepri et al. 2017).  

 

3.2. Ethics 

AVs will have to allocate risks among multiple persons during unavoidable accidents and 

everyday driving scenarios, such as deciding how much space to give to a nearby cyclist 

(Pugnetti & Schläpfer 2018; Goodall 2017), both of which involves ethical decision-making. 

Thus, many scholars have proposed formalising ethical rules4 and technical approaches to 

program ethical rules in AVs. To formalise ethical rules, scholars conduct thought 

experiments such as the trolley problem, where hypothetically, such as in the case that an AV 

																																																								
4. The term ‘rules’ here broadly refers to ethical theories, principles, norms and values. 



must decide whether to swerve and crash into one pedestrian or continue in its current path to 

crash into five pedestrians (Lin 2015). Gathering responses for these situations can reveal 

insights into the ethical preferences of members of society to inform AVs’ decision-making 

(Goodall 2016; Bonnemains et al. 2018). However, the trolley problem contains several 

unrealistic assumptions that do not hold in actual driving scenarios, such as assuming 

complete certainty in the outcomes and that the passenger can choose how harm is distributed 

as in reality, AVs will face uncertainty and risk (Himmelreich 2018; Goodall 2017).  

 

The second perspective towards the ethics of AVs is concerned with the technical approaches 

to program ethical rules from specified ethical theories, such as utilitarianism and deontology 

into the algorithm in a “top-down” approach (Himmelreich 2018; Tzafestas 2018; Wallach et 

al. 2008). Utilitarianism emphasises on the morality of outcomes and argues that the most 

ethical action is the one that maximises the total amount of utility or minimises the total 

quantity of harm (Liu 2018; Johnsen et al. 2017). AV algorithms thus should compute all 

possible outcomes and actions, the probability and magnitude of consequences and evaluate 

the “goodness” resulting from each possible outcome (Tzafestas 2018; Taeihagh & Lim 

2019). In contrast, deontology emphasises that action, rather than outcomes, should be 

motivated by respect for all humans, such as Asimov’s Three Laws of Robotics (Leenes and 

Lucivero 2014; Tzafestas 2018), and its rules can be defined in a hierarchical manner, which 

makes explicit the reasoning behind the algorithm’s ethical decision-making (Thornton et al. 

2017).  

 

Programming each ethical theory in a top-down fashion introduces their own set of 

unintended consequences that can undermine AV safety. Firstly, utilitarian-oriented 

algorithms minimise collective harms and do not consider equity or fairness (Goodall 2014), 



which can lead the AV’s algorithm to discriminate by allocating more risk to the same groups 

of individuals and is exacerbated by bias from using sensitive characteristics as decision-

making criteria (see Section 3.1). Programming utilitarian principles can also be hindered by 

existing limitations in machine perception and other technical issues that limit the AV’s 

ability to compute all possible consequences and actions within a short timeframe (Johnsen et 

al. 2017; Taeihagh & Lim 2019; See Section 3.4). Secondly, algorithms that are programmed 

to follow hierarchically defined deontological ethical rules may not successfully recommend 

an appropriate course of action in scenarios where rules conflict or cannot be satisfied, which 

can hinder the AV's adaptability to new circumstances and create new safety risks, such as 

instructing the AV to halt in its path (Goodall 2016). Furthermore, deontological rules may 

not cover all kinds of driving scenarios (Johnsen et al. 2017; Goodall 2014) and are often 

vague and thus, cannot always be explicitly programmed, such as the definition of 

“obstruction” or “safe” in different scenarios (Leenes & Lucivero 2014; Goodall 2014). 

Given each theory’s limitations, scholars have advocated combining both utilitarian and 

deontological ethics to obtain a broad perspective before deciding on the most ethical choice 

and increasing transparency to justify the system’s outcomes (Goodall 2017). Others have 

proposed a bottom-up approach that allows the AV to learn ethical rules from past data on 

human ethical judgements during driving, but the algorithm can potentially deviate from its 

programmed ethical rules as part of the learning process, and the lack of explicitly 

programmed rules can increase the system’s opacity (Danaher et al. 2017; Bonnemains et al. 

2018).  

 

Germany released ethical rules for AVs in 2017, whereas several governments have released 

guidelines, created advisory committees, and are expanding research on AI-related ethical 

issues. Germany’s ethical rules incorporate both utilitarian and deontological principles by 



emphasising the prioritisation of human life, yet advocating damage minimisation without 

discriminating individuals based on personal characteristics (FMTDI 2017). The rules also 

restrict the use of self-learning systems to non safety-critical functions and highlight the need 

to publicly disclose the programming of AVs. Japan and Singapore’s AI guidelines 

emphasise on human dignity (The Conference towards AI Network Society 2017), and 

human centricity (PDPC 2018) and the Japanese government also created an Advisory Board 

to ensure the sustainability, prosperity, and inclusivity from AI use (Government of Japan 

2016). Similarly, South Korea intends to create ethical guidelines for AI (Ministry of Science 

& ICT 2016). 

 

3.3. Economic incentives 

 

The AV eco-system includes various stakeholders motivated by different incentives, such as 

AV manufacturers, AV consumers, software designers, ridesharing and transportation 

network companies, and hardware companies that shape the AV algorithms’ decision-making 

criterion and preferences. AV manufacturers can program the AVs’ algorithms to maximise 

profit rather than to ensure safe driving outcomes, such as to prioritise the safety of AV 

passengers, which is aligned with customers’ incentives to ensure their own safety and thus, 

causes more safety risks to be allocated to other parties (Liu 2018). Manufacturers can also 

maintain liability claims at a constant level by programming AV’s driving behaviour as a 

function of average income in a given district, with the implication that AVs would “drive 

more carefully” in an “affluent” district compared to in an “economically deprived area” 

(Himmelreich 2018). Doing so could be perceived as discrimination based on income level as 

it effectively transfers safety risks from areas characterised by higher income levels to areas 

characterised by lower income levels.  



 

Differing profit incentives of various stakeholders in the AV value-chain also influence the 

programming of AVs that create systemic effects on the degree of coordination between AVs 

and other road users, potentially increasing the risk of collisions. Firstly, to differentiate their 

AVs, manufacturers can configure their algorithms with different decision-making 

preferences (Himmelreich 2018). The lack of standardisation of the algorithmic preferences 

can reduce the coordination and predictability of AVs’ behaviour and increase risks of 

collisions. While coordination can be achieved through data sharing between manufacturers, 

this may be impeded by concerns over privacy and intellectual property rights (Himmelreich 

2018). Secondly, stakeholders in the AV value-chain  are motivated by different profit 

measures – AV manufacturers consider the “number of vehicles sold” or the “average margin 

per vehicle”, ridesharing and transportation network companies measure profits based on the 

“number of trips completed” and average km/mi or margin per km/mi travelled, and data 

aggregators map mobility data to online behavioural data to maximise the value of the 

“insights” derived from the data (Neels 2018). The implications of potentially misaligned 

incentives between AV stakeholders for AV safety have yet to be explored.  

 

3.4. Technical limitations  

 

Various technical limitations still exist in the AV’s system that can constrain further 

improvements in AV technology (Lin et al. 2018). As shown in figure 1, the AV’s hardware 

comprises of sensors for data collection, external communication networks and actuators (e.g. 

brakes) to execute motor commands, whereas the AV’s software components consist of 

perception, where data is collected from sensors and external communication networks to 

model its environment; Planning that involves decision-making algorithms optimising over 



selected preferences and criterion; and the control component where algorithms compute 

control inputs for the hardware to execute decisions (González et al. 2016; Pendleton et al. 

2017).5  

 

Figure 1: Summary of AV system components (source: Pendleton et al. 2017) 

 

AV perception is constrained by limitations in sensors and ML algorithms’ susceptibility to 

manipulation of image data. Firstly, Global Navigation Satellite System (GNSS)-based 

sensors are costly, and inaccurate in urban environments due to the obstruction of 

communication signals by external objects and inconsistencies between HD Map and GNSS 

coordinates (Cai et al. 2018). While cameras are less costly, they still struggle capturing 

images in unclear backgrounds, such as during adverse weather (Cai et al. 2018; Koopman & 

Wagner 2016) and light detection and ranging (LiDAR) sensors are more accurate but costly 

(Combs et al. 2018). Possible ways to improve sensor accuracy and reduce its costs are 

combining different sensor types and using ML algorithms to process sensor data to improve 

object detection (Schwarting et al. 2018; Pendleton et al. 2017). Secondly, sensor input 

																																																								
5 Other technical issues include Cybersecurity risks and the possibility of hardware failures such as sensor 
failures due to “electrical failures, physical damage, or age”. For a detailed discussion on Cybersecurity 
concerns in AVs, see Lim & Taeihagh (2018).  



images can be artificially modified to force the algorithm to misclassify inputs, such as 

modifying “STOP” signs to provoke a misclassification and cause the car to continue driving 

in its path (Papernot et al. 2016; Nguyen et al. 2015). Various methods of defending neural 

networks against such manipulation have been proposed (e.g. reducing output error 

fluctuations induced by manipulated inputs (Papernot et al. 2015)), but other proposed ways 

to detect adversarial samples have been shown to be easily bypassed (Carlini & Wagner 

2017).  

 

Furthermore, decision-making algorithms still struggle to understand human interactions and 

manoeuvre safely around unexpected environmental changes, and control algorithms remain 

either inaccurate or too computationally expensive. Firstly, it is critical for decision-making 

algorithms to model interactions with humans in the AV, neighbouring the AV and in other 

vehicles to drive smoothly while engaging in negotiations such as overtaking and lane 

changing (Ohn-Bar & Trivedi 2016; Shalev-Shwartz et al. 2016). However, little has been 

done to explore the implications of these interactions for AV vision and learning capabilities, 

and scholars highlight the need for more advancements AV sensor resolution, planning 

methods and in developing standards for modelling these interactions (Schwarting et al. 

2018; Ohn-Bar & Trivedi 2016). Secondly, motion planning algorithms may fail to readjust 

planned trajectories in time when unexpected obstacles emerge (González et al. 2016; 

Pendleton et al. 2017). To avoid such dangerous scenarios, Pendleton et al. (2017) stress the 

need for “incremental planning and replanning” to adjust to unexpected environmental 

changes. In the control component, geometric and kinematic control algorithms only account 

for the AV’s geometrical dimensions and kinematic properties such as acceleration and 

velocity, but neglect vehicle dynamics, which can cause vehicle instability and oscillation at 

high driving speeds (Amer et al. 2017; Dixit et al. 2018). On the other hand, more accurate 



control algorithms that account for nonlinear dynamics of the AV remain too computationally 

costly to be accommodated by the limited computing resources available in existing vehicles 

(Pendleton et al. 2017; Amer et al. 2017).  

 

4. AVs and liability risks 

 

 AV stakeholders in the supply chain shape the programming of its underlying algorithms 

that replace the human driver in making and executing driving decisions, but how 

responsibilities for shaping these algorithms and legal liability for harms should be allocated 

during accidents remains unclear, creating liability risks for AV stakeholders, which will be 

examined in this section.   

 

4.1. Ambiguities in responsibilities 

 

Amidst the debate in the legal and philosophical literature, there is a lack of consensus 

regarding whether AV manufacturers, algorithm programmers or the human AV passenger 

should be responsible for AV accidents and what their responsibilities are. Firstly, unlike 

human drivers who are forced to react instinctively to unexpected accident scenarios, AV 

manufacturers and programmers design these algorithmic decision-making processes without 

any time-constraints and thus, should arguably be expected to make “better decisions” than 

human drivers (Pugnetti & Schläpfer 2018; Lin 2015). However, programmers’ and 

manufacturers’ capacity to control the AV’s resulting behaviour is limited due to the 

unpredictability of the autonomous system’s decision-making, particularly of ML algorithms 

(Liu 2017; Nyholm 2018). Furthermore, holding manufacturers responsible for AV accidents 

can introduce excessive liability risks for manufacturers, which many have recognised can 



dampen longer-run innovation and safety improvements (Leenes and Lucivero 2014; Nyholm 

2018).  

 

Studies argue that instead of holding manufacturers responsible, allocating some 

responsibility to the AV user to stay alert and intervene in anticipated accidents would be 

beneficial for longer-run technological improvements (Hevelke & Nida-Rümelin 2015). 

However, accidents or harms can still result despite AV users fulfilling certain pre-specified 

obligations and AV manufacturers and programmers, ensuring the absence of any 

manufacturing and design defects (Liu 2017). Humans also take a long time to regain 

situational awareness to effectively intervene, which can be further delayed by factors such as 

age, physical or psychological impairments, boredom, or fatigue (Hevelke & Nida-Rümelin 

2015). Alternatively, scholars recommend focusing more on system design, from which 

regulators should learn from and enforce greater safety improvements (Winfield & Jirotka 

2017) or holding all AV users “collectively responsible” for AVs’ safety risks through a 

mandatory tax or insurance (Nyholm 2018; Hevelke & Nida-Rümelin 2015).  

 

Ambiguities in the responsibilities of all stakeholders in the AV value-chain can potentially 

lead AV manufacturers to escape or to displace liability onto AV users. Firstly, under 

existing legal liability frameworks, the AV itself may be held “causally responsible” for the 

outcome whereby the harms from the AV accident are simply categorised as “damages” and 

treated as a “natural phenomena” without ethical or legal consequences, with the possibility 

of using moral and legal interpretation to defer or prevent the ascribing of responsibility (Liu 

2017). Secondly, ambiguities around responsibility can result in “scapegoating” whereby 

manufacturers seek to reduce potential liability claims by displacing liability onto AV users 

(Liu 2018). As AV users are not able to shape the AV’s driving decisions but simultaneously 



can be held responsible for their failure to intervene, manufacturers can easily push 

responsibility to humans, such as equipping AVs with “warnings” or ways of “reverting 

control” (Liu 2018; Elish 2016) 

 

Possible ways to clarify responsibility allocation to mitigate the above unintended 

consequences include clarifying the responsibilities of AV stakeholders based on their roles, 

the rights they enjoy over AVs and the ways in which they exercise control over AVs 

(Nyholm 2018). On the other hand, Liu (2017) argues that instead of focusing on ideas of 

capabilities, capacity, “control and causation”, responsibility doctrines should focus on 

holding the beneficiaries of AVs, which comprise of the AV users, manufacturers and 

programmers, accountable for the risks they impose on third parties in society.  

 

Several countries have issued public consultations, policy recommendations and guidelines 

for industry to clarify various AV stakeholders’ new responsibilities. After gathering 

feedback from consultations, Australia’s National Transport Commission (NTC) issued 

policy recommendations to clarify the distribution of legal responsibilities (NTC 2018), 

which includes creating or amending new driving laws that ensure the existence of and 

clarifies who is the responsible legal entity, and identifies obligations of the AV system and 

of a “fallback-ready user” to stay alert to respond to emergencies and regain control of the 

AV if necessary (NTC 2018).6 Germany’s ethical rules for AVs (see Section 3.2) clarifies the 

responsibilities of a range of parties that operate components of the AV and connected traffic 

infrastructure. For instance, entities that operate the original equipment manufacturer’s 

																																																								
6 The national working group intends to further examine and reach a consensus on these new obligations, after 
which the NTC will consult with key industry stakeholders and start drafting legislation after May 2019. 



backend IT systems are responsible for the quality and reliability of AV data, whereas 

telecommunications operators are responsible for secure data transmission (FMTDI 2017). 

 

4.2. Legal ambiguities   

 

Existing tort liability regimes7 can subject AV manufacturers, algorithm programmers and 

other entities in the AV supply chain to products liability based on strict products liability for 

product defects (Glancy 2015), which includes manufacturing defects and/or design defects, 

but there are several issues in determining the existence of defects and the degree to which 

the AV manufacturer or algorithm programmer caused these defects. Firstly, an AV is 

considered to have manufacturing defects when it did not operate as intended by the 

manufacturer, such as when a sensor’s poor wiring resulted in malfunctions and caused an 

accident (Kim et al. 2017; Mackie 2018). Determining the AV manufacturer’s liability 

requires both proof that a malfunction existed and that the manufacturer caused the defect, 

which is challenging as the defect could have been introduced by other third parties after the 

manufacturing process, such as during repair works (Mackie 2018), and different 

interpretations of product malfunctions could be used to argue that the AV system 

“proximately” caused the accident (Geistfeld 2017).  

 

Secondly, strict product liability can hold AV manufacturers and programmers liable for 

design defects in the AV software, such as coding errors, that “proximately caused” the AV 

accident (Geistfeld 2017). Courts typically use two types of tests to determine design defects 

that contain several limitations when applied to ML systems – the “risk utility test” assumes 

																																																								
7 AVs introduce concerns around both civil and criminal liability. For the brevity of this study, we focus on civil 
liability, specifically based on tort liability that comprises of strict product liability based on product defects or 
on negligence (Glancy 2015). 



that only rule-based algorithms shape the system’s behaviour, but ML systems depend largely 

on learnt rules from the data; and the “consumer expectations test” defines a design defect as 

one that yields “unreasonably dangerous” outcomes beyond an “ordinary” consumer’s 

expectations,8 which may be inappropriate as consumers’ lack sufficient technical knowledge 

on AVs and their expectations can change significantly over time (Geistfeld 2017; Kim et al. 

2017). The extent to which the programmer vis-à-vis the manufacturer should have 

anticipated certain software errors and the extent of testing that manufacturers should have 

conducted to reveal possible erroneous behaviours in advance remains unclear (Kim et al. 

2017; Mackie 2018). 

 

Product liability based on negligence could be imposed on entities for their failure to devote 

sufficient attention in the manufacture, distribution or sale of a product to mitigate potentially 

avoidable harm caused to others (Gless et al. 2016; Glancy 2015). Even without a 

manufacturing or design defect, AV manufacturers and programmers can be held liable for 

failing to design AVs to “protect” or at least be “impartial” to the interests of bystanders, 

such as programming the AV to treat both consumers and bystanders equally or to be capable 

of communicating with pedestrians (Geistfeld 2017), as well as equipping the AV with 

sufficient warnings and instructions to inform consumers and bystanders of the safety and 

risks involved in using the AV (Kim et al. 2017; Mackie 2018). Thus, scholars have 

recommended  that manufacturers can avoid these liability risks by equipping the AV with 

sufficient warnings before the sale of the AV, particularly if a “foreseeable risk” of harms 

that would significantly influence the consumer’s decision to use the AV was found, as well 

as after the sale through the AV’s online notifications (Geistfeld 2017). 

																																																								
8 To be “unreasonably dangerous”, the product “must be dangerous to an extent beyond that which would be 
contemplated by the ordinary consumer who purchases it, with the ordinary knowledge common to the 
community as to its characteristics” (Kim et al. 2017). 



 

To address liability risks from AVs, a “first party” automobile insurance (or “no fault” 

liability regime) has been proposed and implemented by several governments, which 

removes the need for accident victims to engage in costly lawsuits to prove the fault of 

another party and ensures compensation for victims by the “first party insurer” who will take 

recourse against another party (Eastman 2016; Vellinga 2017). In 2017, the UK government 

passed the Bill HC 143 that requires insurance companies to automatically compensate 

accident victims for most of the damages caused by insured AVs under the existing motor 

vehicle insurance scheme (Taeihagh & Lim 2019). Similarly, the EU evaluated their Motor 

Insurance Directive as sufficient to ensure compensation to AV accident victims, whereby 

insurers can take recourse against manufacturers under the existing Product Liability 

Directive (EC 2018). Other recommendations to manage liability risks include increasing 

transparency, such as installing “black boxes” or event data recorders into AVs to aid 

investigations into the decision-making of AVs before and during an accident, which was 

mandated by Germany’s new AV legislation in June 2017 and recommended by the Japanese 

government in 2018 (Taeihagh & Lim 2019). Scholars also recommend standardising and 

certifying black box designs (Winfield and Jirotka 2017) and increasing the interpretability of 

algorithms, but the latter remains challenging for highly opaque algorithms (McAllister et al. 

2017; see Section 3.1). 

 

5. Discussion and conclusions 

 

This study examined several key factors in algorithmic decision-making in AVs that 

influence the AV’s driving decisions, their implications for safety and discrimination and 

several steps taken to address them. Bias may be unintentionally introduced through the AVs’ 



data, choice of decision-making criterion and algorithms and intentionally introduced by AV 

stakeholders to prioritise the safety of certain groups of individuals to maximise profits. To 

identify discrimination and bias, transparency can be increased by ensuring the traceability of 

outputs to inputs and by increasing algorithmic interpretability, but this remains a challenge 

due to the opacity of complex ML algorithms. Singapore and Japan have issued AI guidelines 

not specific to AVs that emphasise on explainability and transparency of algorithms’ 

programming, while the EU GDPR prohibits algorithmic decision-making that utilises 

sensitive personal data and mandates a “right to explanation”. Further steps have yet to be 

taken to analyse biases and their implications for safety and discrimination in the context of 

AVs. 

 

AVs can also introduce new safety risks and discrimination from incorporating ethical rules 

in AVs’ algorithms. Trolley problems contain unrealistic assumptions that are incompatible 

with actual driving scenarios; the top-down approach of programming utilitarian ethical 

principles that aim to minimise harms can consistently allocate more risks to particular 

individuals, yielding discrimination, and are limited by computational limitations in the AV 

system, whereas deontological ethical rules can conflict, may not be sufficiently 

comprehensive and may not be possible to explicitly program; Learnt ethical rules from the 

bottom-up approach can be potentially  unethical and increase the system’s opacity. Several 

governments have created AI ethical guidelines and committees, whereas Germany has 

released AV-specific ethical guidelines that combine utilitarian and deontological principles, 

but more research to examine and reconcile trade-offs in programming different ethical 

principles into AVs is required. 

 



Economic incentives motivate key AV stakeholders to program AV’s driving decisions in 

ways that potentially undermine road safety and yield discrimination, such as manufacturers’ 

prioritisation of AV passengers’ safety to maximise profit which can yield unfair allocations 

of safety risks to others, and differentiating AVs’ algorithmic preferences that yield reduced 

traffic coordination and thus, greater safety risks. The implications of the interactions and 

potential conflicts in incentives among other third parties in the AV value-chain also requires 

more examination in future work.  

 

Various technical issues can undermine the AV system’s performance and yield dangerous 

driving behaviour. In AV perception, sensors remain either too costly or inaccurate during 

harsh driving conditions, and adversaries can easily manipulate input images to cause 

misclassifications, which remain difficult to detect. In addition, more research has yet to 

examine issues in modelling human-vehicle interactions in AVs’ decision-making 

algorithms, adjusting planned trajectories to unexpected environmental changes and their 

implications for road safety. Lastly, different control algorithms face trade-offs in accuracy 

and computational cost, which necessitates more research to improve algorithms’ efficiency 

and greater advancements in processor speeds and memory (Pendleton et al. 2017).  

 

Lastly, this study examined the factors that contribute to liability risks for AV stakeholders. 

Firstly, ambiguities in the responsibilities of AV stakeholders can undermine the assignment 

of liability. Holding AV manufacturers and programmers responsible can introduce 

significant liability risks that can dampen further safety improvements in AVs and motivate 

manufacturers to displace liability onto AV passengers for failing to sufficiently monitor the 

AV and intervene in accidents, but the latter may be unethical as humans’ interventions may 

be ineffective or inappropriate. Ways to clarify responsibilities have been proposed, such as 



analysing the roles and benefits enjoyed by AV stakeholders. Australia’s government has 

consulted the public and recommended steps to identify responsibilities for the AV system 

and human driver to be incorporated in future laws, and Germany’s ethical rules for AVs 

outlines the responsibilities of other stakeholders that operate connected traffic infrastructure. 

Secondly, under strict product liability regimes, it is challenging to determine manufacturing 

and software design defects and the cause of these defects, as AV stakeholders have limited 

control over the unpredictable and data-driven decisions of ML systems, and AV 

stakeholders can also be held liable for negligence. These risks can be avoided by providing 

AV users with sufficient warnings, by adopting no fault liability regimes that ensure 

compensation to AV victims without requiring proof of fault, which has been implemented in 

the UK and EU, and/or by mandating black boxes in AVs, which has been implemented in 

Germany and recommended in Japan. 
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